Aromātai
\frac{1-x}{3x+1}
Whakaroha
\frac{1-x}{3x+1}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{1}{x}-\frac{x}{x}}{\frac{1}{x}+3}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{x}{x}.
\frac{\frac{1-x}{x}}{\frac{1}{x}+3}
Tā te mea he rite te tauraro o \frac{1}{x} me \frac{x}{x}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{1-x}{x}}{\frac{1}{x}+\frac{3x}{x}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 3 ki te \frac{x}{x}.
\frac{\frac{1-x}{x}}{\frac{1+3x}{x}}
Tā te mea he rite te tauraro o \frac{1}{x} me \frac{3x}{x}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\left(1-x\right)x}{x\left(1+3x\right)}
Whakawehe \frac{1-x}{x} ki te \frac{1+3x}{x} mā te whakarea \frac{1-x}{x} ki te tau huripoki o \frac{1+3x}{x}.
\frac{-x+1}{3x+1}
Me whakakore tahi te x i te taurunga me te tauraro.
\frac{\frac{1}{x}-\frac{x}{x}}{\frac{1}{x}+3}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{x}{x}.
\frac{\frac{1-x}{x}}{\frac{1}{x}+3}
Tā te mea he rite te tauraro o \frac{1}{x} me \frac{x}{x}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{1-x}{x}}{\frac{1}{x}+\frac{3x}{x}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 3 ki te \frac{x}{x}.
\frac{\frac{1-x}{x}}{\frac{1+3x}{x}}
Tā te mea he rite te tauraro o \frac{1}{x} me \frac{3x}{x}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\left(1-x\right)x}{x\left(1+3x\right)}
Whakawehe \frac{1-x}{x} ki te \frac{1+3x}{x} mā te whakarea \frac{1-x}{x} ki te tau huripoki o \frac{1+3x}{x}.
\frac{-x+1}{3x+1}
Me whakakore tahi te x i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}