Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\frac{1}{x\left(x-y\right)}-\frac{1}{y\left(-x+y\right)}}{\frac{1}{x^{2}y-y^{2}x}}
Tauwehea te x^{2}-xy. Tauwehea te y^{2}-xy.
\frac{\frac{-y}{xy\left(-x+y\right)}-\frac{x}{xy\left(-x+y\right)}}{\frac{1}{x^{2}y-y^{2}x}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x\left(x-y\right) me y\left(-x+y\right) ko xy\left(-x+y\right). Whakareatia \frac{1}{x\left(x-y\right)} ki te \frac{-y}{-y}. Whakareatia \frac{1}{y\left(-x+y\right)} ki te \frac{x}{x}.
\frac{\frac{-y-x}{xy\left(-x+y\right)}}{\frac{1}{x^{2}y-y^{2}x}}
Tā te mea he rite te tauraro o \frac{-y}{xy\left(-x+y\right)} me \frac{x}{xy\left(-x+y\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\left(-y-x\right)\left(x^{2}y-y^{2}x\right)}{xy\left(-x+y\right)}
Whakawehe \frac{-y-x}{xy\left(-x+y\right)} ki te \frac{1}{x^{2}y-y^{2}x} mā te whakarea \frac{-y-x}{xy\left(-x+y\right)} ki te tau huripoki o \frac{1}{x^{2}y-y^{2}x}.
\frac{xy\left(x-y\right)\left(-x-y\right)}{xy\left(-x+y\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{-xy\left(-x+y\right)\left(-x-y\right)}{xy\left(-x+y\right)}
Unuhia te tohu tōraro i roto o x-y.
-\left(-x-y\right)
Me whakakore tahi te xy\left(-x+y\right) i te taurunga me te tauraro.
x+y
Me whakaroha te kīanga.
\frac{\frac{1}{x\left(x-y\right)}-\frac{1}{y\left(-x+y\right)}}{\frac{1}{x^{2}y-y^{2}x}}
Tauwehea te x^{2}-xy. Tauwehea te y^{2}-xy.
\frac{\frac{-y}{xy\left(-x+y\right)}-\frac{x}{xy\left(-x+y\right)}}{\frac{1}{x^{2}y-y^{2}x}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x\left(x-y\right) me y\left(-x+y\right) ko xy\left(-x+y\right). Whakareatia \frac{1}{x\left(x-y\right)} ki te \frac{-y}{-y}. Whakareatia \frac{1}{y\left(-x+y\right)} ki te \frac{x}{x}.
\frac{\frac{-y-x}{xy\left(-x+y\right)}}{\frac{1}{x^{2}y-y^{2}x}}
Tā te mea he rite te tauraro o \frac{-y}{xy\left(-x+y\right)} me \frac{x}{xy\left(-x+y\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\left(-y-x\right)\left(x^{2}y-y^{2}x\right)}{xy\left(-x+y\right)}
Whakawehe \frac{-y-x}{xy\left(-x+y\right)} ki te \frac{1}{x^{2}y-y^{2}x} mā te whakarea \frac{-y-x}{xy\left(-x+y\right)} ki te tau huripoki o \frac{1}{x^{2}y-y^{2}x}.
\frac{xy\left(x-y\right)\left(-x-y\right)}{xy\left(-x+y\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{-xy\left(-x+y\right)\left(-x-y\right)}{xy\left(-x+y\right)}
Unuhia te tohu tōraro i roto o x-y.
-\left(-x-y\right)
Me whakakore tahi te xy\left(-x+y\right) i te taurunga me te tauraro.
x+y
Me whakaroha te kīanga.