Aromātai
x+y
Whakaroha
x+y
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{1}{x\left(x-y\right)}-\frac{1}{y\left(-x+y\right)}}{\frac{1}{x^{2}y-y^{2}x}}
Tauwehea te x^{2}-xy. Tauwehea te y^{2}-xy.
\frac{\frac{-y}{xy\left(-x+y\right)}-\frac{x}{xy\left(-x+y\right)}}{\frac{1}{x^{2}y-y^{2}x}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x\left(x-y\right) me y\left(-x+y\right) ko xy\left(-x+y\right). Whakareatia \frac{1}{x\left(x-y\right)} ki te \frac{-y}{-y}. Whakareatia \frac{1}{y\left(-x+y\right)} ki te \frac{x}{x}.
\frac{\frac{-y-x}{xy\left(-x+y\right)}}{\frac{1}{x^{2}y-y^{2}x}}
Tā te mea he rite te tauraro o \frac{-y}{xy\left(-x+y\right)} me \frac{x}{xy\left(-x+y\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\left(-y-x\right)\left(x^{2}y-y^{2}x\right)}{xy\left(-x+y\right)}
Whakawehe \frac{-y-x}{xy\left(-x+y\right)} ki te \frac{1}{x^{2}y-y^{2}x} mā te whakarea \frac{-y-x}{xy\left(-x+y\right)} ki te tau huripoki o \frac{1}{x^{2}y-y^{2}x}.
\frac{xy\left(x-y\right)\left(-x-y\right)}{xy\left(-x+y\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{-xy\left(-x+y\right)\left(-x-y\right)}{xy\left(-x+y\right)}
Unuhia te tohu tōraro i roto o x-y.
-\left(-x-y\right)
Me whakakore tahi te xy\left(-x+y\right) i te taurunga me te tauraro.
x+y
Me whakaroha te kīanga.
\frac{\frac{1}{x\left(x-y\right)}-\frac{1}{y\left(-x+y\right)}}{\frac{1}{x^{2}y-y^{2}x}}
Tauwehea te x^{2}-xy. Tauwehea te y^{2}-xy.
\frac{\frac{-y}{xy\left(-x+y\right)}-\frac{x}{xy\left(-x+y\right)}}{\frac{1}{x^{2}y-y^{2}x}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x\left(x-y\right) me y\left(-x+y\right) ko xy\left(-x+y\right). Whakareatia \frac{1}{x\left(x-y\right)} ki te \frac{-y}{-y}. Whakareatia \frac{1}{y\left(-x+y\right)} ki te \frac{x}{x}.
\frac{\frac{-y-x}{xy\left(-x+y\right)}}{\frac{1}{x^{2}y-y^{2}x}}
Tā te mea he rite te tauraro o \frac{-y}{xy\left(-x+y\right)} me \frac{x}{xy\left(-x+y\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\left(-y-x\right)\left(x^{2}y-y^{2}x\right)}{xy\left(-x+y\right)}
Whakawehe \frac{-y-x}{xy\left(-x+y\right)} ki te \frac{1}{x^{2}y-y^{2}x} mā te whakarea \frac{-y-x}{xy\left(-x+y\right)} ki te tau huripoki o \frac{1}{x^{2}y-y^{2}x}.
\frac{xy\left(x-y\right)\left(-x-y\right)}{xy\left(-x+y\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{-xy\left(-x+y\right)\left(-x-y\right)}{xy\left(-x+y\right)}
Unuhia te tohu tōraro i roto o x-y.
-\left(-x-y\right)
Me whakakore tahi te xy\left(-x+y\right) i te taurunga me te tauraro.
x+y
Me whakaroha te kīanga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}