Aromātai
-\frac{1}{x\left(x+h\right)}
Whakaroha
-\frac{1}{x\left(x+h\right)}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{x}{x\left(x+h\right)}-\frac{x+h}{x\left(x+h\right)}}{h}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x+h me x ko x\left(x+h\right). Whakareatia \frac{1}{x+h} ki te \frac{x}{x}. Whakareatia \frac{1}{x} ki te \frac{x+h}{x+h}.
\frac{\frac{x-\left(x+h\right)}{x\left(x+h\right)}}{h}
Tā te mea he rite te tauraro o \frac{x}{x\left(x+h\right)} me \frac{x+h}{x\left(x+h\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{x-x-h}{x\left(x+h\right)}}{h}
Mahia ngā whakarea i roto o x-\left(x+h\right).
\frac{\frac{-h}{x\left(x+h\right)}}{h}
Whakakotahitia ngā kupu rite i x-x-h.
\frac{-h}{x\left(x+h\right)h}
Tuhia te \frac{\frac{-h}{x\left(x+h\right)}}{h} hei hautanga kotahi.
\frac{-1}{x\left(x+h\right)}
Me whakakore tahi te h i te taurunga me te tauraro.
\frac{-1}{x^{2}+xh}
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+h.
\frac{\frac{x}{x\left(x+h\right)}-\frac{x+h}{x\left(x+h\right)}}{h}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x+h me x ko x\left(x+h\right). Whakareatia \frac{1}{x+h} ki te \frac{x}{x}. Whakareatia \frac{1}{x} ki te \frac{x+h}{x+h}.
\frac{\frac{x-\left(x+h\right)}{x\left(x+h\right)}}{h}
Tā te mea he rite te tauraro o \frac{x}{x\left(x+h\right)} me \frac{x+h}{x\left(x+h\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{x-x-h}{x\left(x+h\right)}}{h}
Mahia ngā whakarea i roto o x-\left(x+h\right).
\frac{\frac{-h}{x\left(x+h\right)}}{h}
Whakakotahitia ngā kupu rite i x-x-h.
\frac{-h}{x\left(x+h\right)h}
Tuhia te \frac{\frac{-h}{x\left(x+h\right)}}{h} hei hautanga kotahi.
\frac{-1}{x\left(x+h\right)}
Me whakakore tahi te h i te taurunga me te tauraro.
\frac{-1}{x^{2}+xh}
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+h.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}