Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\frac{x}{x\left(x+h\right)}-\frac{x+h}{x\left(x+h\right)}}{h}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x+h me x ko x\left(x+h\right). Whakareatia \frac{1}{x+h} ki te \frac{x}{x}. Whakareatia \frac{1}{x} ki te \frac{x+h}{x+h}.
\frac{\frac{x-\left(x+h\right)}{x\left(x+h\right)}}{h}
Tā te mea he rite te tauraro o \frac{x}{x\left(x+h\right)} me \frac{x+h}{x\left(x+h\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{x-x-h}{x\left(x+h\right)}}{h}
Mahia ngā whakarea i roto o x-\left(x+h\right).
\frac{\frac{-h}{x\left(x+h\right)}}{h}
Whakakotahitia ngā kupu rite i x-x-h.
\frac{-h}{x\left(x+h\right)h}
Tuhia te \frac{\frac{-h}{x\left(x+h\right)}}{h} hei hautanga kotahi.
\frac{-1}{x\left(x+h\right)}
Me whakakore tahi te h i te taurunga me te tauraro.
\frac{-1}{x^{2}+xh}
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+h.
\frac{\frac{x}{x\left(x+h\right)}-\frac{x+h}{x\left(x+h\right)}}{h}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x+h me x ko x\left(x+h\right). Whakareatia \frac{1}{x+h} ki te \frac{x}{x}. Whakareatia \frac{1}{x} ki te \frac{x+h}{x+h}.
\frac{\frac{x-\left(x+h\right)}{x\left(x+h\right)}}{h}
Tā te mea he rite te tauraro o \frac{x}{x\left(x+h\right)} me \frac{x+h}{x\left(x+h\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{x-x-h}{x\left(x+h\right)}}{h}
Mahia ngā whakarea i roto o x-\left(x+h\right).
\frac{\frac{-h}{x\left(x+h\right)}}{h}
Whakakotahitia ngā kupu rite i x-x-h.
\frac{-h}{x\left(x+h\right)h}
Tuhia te \frac{\frac{-h}{x\left(x+h\right)}}{h} hei hautanga kotahi.
\frac{-1}{x\left(x+h\right)}
Me whakakore tahi te h i te taurunga me te tauraro.
\frac{-1}{x^{2}+xh}
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+h.