Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{x}{\left(x+2\right)\times 6}
Whakawehe \frac{1}{x+2} ki te \frac{6}{x} mā te whakarea \frac{1}{x+2} ki te tau huripoki o \frac{6}{x}.
\frac{x}{6x+12}
Whakamahia te āhuatanga tohatoha hei whakarea te x+2 ki te 6.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{\left(x+2\right)\times 6})
Whakawehe \frac{1}{x+2} ki te \frac{6}{x} mā te whakarea \frac{1}{x+2} ki te tau huripoki o \frac{6}{x}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{6x+12})
Whakamahia te āhuatanga tohatoha hei whakarea te x+2 ki te 6.
\frac{\left(6x^{1}+12\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1})-x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(6x^{1}+12)}{\left(6x^{1}+12\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(6x^{1}+12\right)x^{1-1}-x^{1}\times 6x^{1-1}}{\left(6x^{1}+12\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(6x^{1}+12\right)x^{0}-x^{1}\times 6x^{0}}{\left(6x^{1}+12\right)^{2}}
Mahia ngā tātaitanga.
\frac{6x^{1}x^{0}+12x^{0}-x^{1}\times 6x^{0}}{\left(6x^{1}+12\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{6x^{1}+12x^{0}-6x^{1}}{\left(6x^{1}+12\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{\left(6-6\right)x^{1}+12x^{0}}{\left(6x^{1}+12\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{12x^{0}}{\left(6x^{1}+12\right)^{2}}
Tango 6 mai i 6.
\frac{12x^{0}}{\left(6x+12\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{12\times 1}{\left(6x+12\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{12}{\left(6x+12\right)^{2}}
Mō tētahi kupu t, t\times 1=t me 1t=t.