Aromātai
1
Tauwehe
1
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(\frac{1}{p}+\frac{1}{q}\right)pq}{p+q}
Whakawehe \frac{1}{p}+\frac{1}{q} ki te \frac{p+q}{pq} mā te whakarea \frac{1}{p}+\frac{1}{q} ki te tau huripoki o \frac{p+q}{pq}.
\frac{\left(\frac{q}{pq}+\frac{p}{pq}\right)pq}{p+q}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o p me q ko pq. Whakareatia \frac{1}{p} ki te \frac{q}{q}. Whakareatia \frac{1}{q} ki te \frac{p}{p}.
\frac{\frac{q+p}{pq}pq}{p+q}
Tā te mea he rite te tauraro o \frac{q}{pq} me \frac{p}{pq}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{\left(q+p\right)p}{pq}q}{p+q}
Tuhia te \frac{q+p}{pq}p hei hautanga kotahi.
\frac{\frac{p+q}{q}q}{p+q}
Me whakakore tahi te p i te taurunga me te tauraro.
\frac{p+q}{p+q}
Me whakakore te q me te q.
1
Me whakakore tahi te p+q i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}