Aromātai
-\frac{2b-a}{3b-a}
Whakaroha
-\frac{2b-a}{3b-a}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{a+b}{\left(a+b\right)\left(a-b\right)}-\frac{3\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{b-a}+\frac{4}{b+a}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a-b me a+b ko \left(a+b\right)\left(a-b\right). Whakareatia \frac{1}{a-b} ki te \frac{a+b}{a+b}. Whakareatia \frac{3}{a+b} ki te \frac{a-b}{a-b}.
\frac{\frac{a+b-3\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{b-a}+\frac{4}{b+a}}
Tā te mea he rite te tauraro o \frac{a+b}{\left(a+b\right)\left(a-b\right)} me \frac{3\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{a+b-3a+3b}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{b-a}+\frac{4}{b+a}}
Mahia ngā whakarea i roto o a+b-3\left(a-b\right).
\frac{\frac{-2a+4b}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{b-a}+\frac{4}{b+a}}
Whakakotahitia ngā kupu rite i a+b-3a+3b.
\frac{\frac{-2a+4b}{\left(a+b\right)\left(a-b\right)}}{\frac{2\left(a+b\right)}{\left(a+b\right)\left(-a+b\right)}+\frac{4\left(-a+b\right)}{\left(a+b\right)\left(-a+b\right)}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o b-a me b+a ko \left(a+b\right)\left(-a+b\right). Whakareatia \frac{2}{b-a} ki te \frac{a+b}{a+b}. Whakareatia \frac{4}{b+a} ki te \frac{-a+b}{-a+b}.
\frac{\frac{-2a+4b}{\left(a+b\right)\left(a-b\right)}}{\frac{2\left(a+b\right)+4\left(-a+b\right)}{\left(a+b\right)\left(-a+b\right)}}
Tā te mea he rite te tauraro o \frac{2\left(a+b\right)}{\left(a+b\right)\left(-a+b\right)} me \frac{4\left(-a+b\right)}{\left(a+b\right)\left(-a+b\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{-2a+4b}{\left(a+b\right)\left(a-b\right)}}{\frac{2a+2b-4a+4b}{\left(a+b\right)\left(-a+b\right)}}
Mahia ngā whakarea i roto o 2\left(a+b\right)+4\left(-a+b\right).
\frac{\frac{-2a+4b}{\left(a+b\right)\left(a-b\right)}}{\frac{-2a+6b}{\left(a+b\right)\left(-a+b\right)}}
Whakakotahitia ngā kupu rite i 2a+2b-4a+4b.
\frac{\left(-2a+4b\right)\left(a+b\right)\left(-a+b\right)}{\left(a+b\right)\left(a-b\right)\left(-2a+6b\right)}
Whakawehe \frac{-2a+4b}{\left(a+b\right)\left(a-b\right)} ki te \frac{-2a+6b}{\left(a+b\right)\left(-a+b\right)} mā te whakarea \frac{-2a+4b}{\left(a+b\right)\left(a-b\right)} ki te tau huripoki o \frac{-2a+6b}{\left(a+b\right)\left(-a+b\right)}.
\frac{-\left(a+b\right)\left(a-b\right)\left(-2a+4b\right)}{\left(a+b\right)\left(a-b\right)\left(-2a+6b\right)}
Unuhia te tohu tōraro i roto o -a+b.
\frac{-\left(-2a+4b\right)}{-2a+6b}
Me whakakore tahi te \left(a+b\right)\left(a-b\right) i te taurunga me te tauraro.
\frac{-2\left(-a+2b\right)}{2\left(-a+3b\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{-\left(-a+2b\right)}{-a+3b}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{a-2b}{-a+3b}
Me whakaroha te kīanga.
\frac{\frac{a+b}{\left(a+b\right)\left(a-b\right)}-\frac{3\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{b-a}+\frac{4}{b+a}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a-b me a+b ko \left(a+b\right)\left(a-b\right). Whakareatia \frac{1}{a-b} ki te \frac{a+b}{a+b}. Whakareatia \frac{3}{a+b} ki te \frac{a-b}{a-b}.
\frac{\frac{a+b-3\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{b-a}+\frac{4}{b+a}}
Tā te mea he rite te tauraro o \frac{a+b}{\left(a+b\right)\left(a-b\right)} me \frac{3\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{a+b-3a+3b}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{b-a}+\frac{4}{b+a}}
Mahia ngā whakarea i roto o a+b-3\left(a-b\right).
\frac{\frac{-2a+4b}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{b-a}+\frac{4}{b+a}}
Whakakotahitia ngā kupu rite i a+b-3a+3b.
\frac{\frac{-2a+4b}{\left(a+b\right)\left(a-b\right)}}{\frac{2\left(a+b\right)}{\left(a+b\right)\left(-a+b\right)}+\frac{4\left(-a+b\right)}{\left(a+b\right)\left(-a+b\right)}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o b-a me b+a ko \left(a+b\right)\left(-a+b\right). Whakareatia \frac{2}{b-a} ki te \frac{a+b}{a+b}. Whakareatia \frac{4}{b+a} ki te \frac{-a+b}{-a+b}.
\frac{\frac{-2a+4b}{\left(a+b\right)\left(a-b\right)}}{\frac{2\left(a+b\right)+4\left(-a+b\right)}{\left(a+b\right)\left(-a+b\right)}}
Tā te mea he rite te tauraro o \frac{2\left(a+b\right)}{\left(a+b\right)\left(-a+b\right)} me \frac{4\left(-a+b\right)}{\left(a+b\right)\left(-a+b\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{-2a+4b}{\left(a+b\right)\left(a-b\right)}}{\frac{2a+2b-4a+4b}{\left(a+b\right)\left(-a+b\right)}}
Mahia ngā whakarea i roto o 2\left(a+b\right)+4\left(-a+b\right).
\frac{\frac{-2a+4b}{\left(a+b\right)\left(a-b\right)}}{\frac{-2a+6b}{\left(a+b\right)\left(-a+b\right)}}
Whakakotahitia ngā kupu rite i 2a+2b-4a+4b.
\frac{\left(-2a+4b\right)\left(a+b\right)\left(-a+b\right)}{\left(a+b\right)\left(a-b\right)\left(-2a+6b\right)}
Whakawehe \frac{-2a+4b}{\left(a+b\right)\left(a-b\right)} ki te \frac{-2a+6b}{\left(a+b\right)\left(-a+b\right)} mā te whakarea \frac{-2a+4b}{\left(a+b\right)\left(a-b\right)} ki te tau huripoki o \frac{-2a+6b}{\left(a+b\right)\left(-a+b\right)}.
\frac{-\left(a+b\right)\left(a-b\right)\left(-2a+4b\right)}{\left(a+b\right)\left(a-b\right)\left(-2a+6b\right)}
Unuhia te tohu tōraro i roto o -a+b.
\frac{-\left(-2a+4b\right)}{-2a+6b}
Me whakakore tahi te \left(a+b\right)\left(a-b\right) i te taurunga me te tauraro.
\frac{-2\left(-a+2b\right)}{2\left(-a+3b\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{-\left(-a+2b\right)}{-a+3b}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{a-2b}{-a+3b}
Me whakaroha te kīanga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}