Aromātai
\frac{1}{10}=0.1
Tauwehe
\frac{1}{2 \cdot 5} = 0.1
Pātaitai
Arithmetic
\frac { \frac { 1 } { 5 } - \frac { 3 } { 10 } + \frac { 1 } { 4 } \cdot 2 } { 4 } =
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{2}{10}-\frac{3}{10}+\frac{1}{4}\times 2}{4}
Ko te maha noa iti rawa atu o 5 me 10 ko 10. Me tahuri \frac{1}{5} me \frac{3}{10} ki te hautau me te tautūnga 10.
\frac{\frac{2-3}{10}+\frac{1}{4}\times 2}{4}
Tā te mea he rite te tauraro o \frac{2}{10} me \frac{3}{10}, me tango rāua mā te tango i ō raua taurunga.
\frac{-\frac{1}{10}+\frac{1}{4}\times 2}{4}
Tangohia te 3 i te 2, ka -1.
\frac{-\frac{1}{10}+\frac{2}{4}}{4}
Whakareatia te \frac{1}{4} ki te 2, ka \frac{2}{4}.
\frac{-\frac{1}{10}+\frac{1}{2}}{4}
Whakahekea te hautanga \frac{2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{-\frac{1}{10}+\frac{5}{10}}{4}
Ko te maha noa iti rawa atu o 10 me 2 ko 10. Me tahuri -\frac{1}{10} me \frac{1}{2} ki te hautau me te tautūnga 10.
\frac{\frac{-1+5}{10}}{4}
Tā te mea he rite te tauraro o -\frac{1}{10} me \frac{5}{10}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{4}{10}}{4}
Tāpirihia te -1 ki te 5, ka 4.
\frac{\frac{2}{5}}{4}
Whakahekea te hautanga \frac{4}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{2}{5\times 4}
Tuhia te \frac{\frac{2}{5}}{4} hei hautanga kotahi.
\frac{2}{20}
Whakareatia te 5 ki te 4, ka 20.
\frac{1}{10}
Whakahekea te hautanga \frac{2}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}