Aromātai
\frac{42}{25}=1.68
Tauwehe
\frac{2 \cdot 3 \cdot 7}{5 ^ {2}} = 1\frac{17}{25} = 1.68
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{5}{20}+\frac{16}{20}}{\frac{1}{8}+\frac{1}{2}}
Ko te maha noa iti rawa atu o 4 me 5 ko 20. Me tahuri \frac{1}{4} me \frac{4}{5} ki te hautau me te tautūnga 20.
\frac{\frac{5+16}{20}}{\frac{1}{8}+\frac{1}{2}}
Tā te mea he rite te tauraro o \frac{5}{20} me \frac{16}{20}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{21}{20}}{\frac{1}{8}+\frac{1}{2}}
Tāpirihia te 5 ki te 16, ka 21.
\frac{\frac{21}{20}}{\frac{1}{8}+\frac{4}{8}}
Ko te maha noa iti rawa atu o 8 me 2 ko 8. Me tahuri \frac{1}{8} me \frac{1}{2} ki te hautau me te tautūnga 8.
\frac{\frac{21}{20}}{\frac{1+4}{8}}
Tā te mea he rite te tauraro o \frac{1}{8} me \frac{4}{8}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{21}{20}}{\frac{5}{8}}
Tāpirihia te 1 ki te 4, ka 5.
\frac{21}{20}\times \frac{8}{5}
Whakawehe \frac{21}{20} ki te \frac{5}{8} mā te whakarea \frac{21}{20} ki te tau huripoki o \frac{5}{8}.
\frac{21\times 8}{20\times 5}
Me whakarea te \frac{21}{20} ki te \frac{8}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{168}{100}
Mahia ngā whakarea i roto i te hautanga \frac{21\times 8}{20\times 5}.
\frac{42}{25}
Whakahekea te hautanga \frac{168}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}