Whakaoti mō a
a = -\frac{91}{60} = -1\frac{31}{60} \approx -1.516666667
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{3\times 0.2}=\frac{\frac{1}{5}-\frac{a}{7}}{\frac{1}{4}}
Tuhia te \frac{\frac{1}{3}}{0.2} hei hautanga kotahi.
\frac{1}{0.6}=\frac{\frac{1}{5}-\frac{a}{7}}{\frac{1}{4}}
Whakareatia te 3 ki te 0.2, ka 0.6.
\frac{10}{6}=\frac{\frac{1}{5}-\frac{a}{7}}{\frac{1}{4}}
Whakarohaina te \frac{1}{0.6} mā te whakarea i te taurunga me te tauraro ki te 10.
\frac{5}{3}=\frac{\frac{1}{5}-\frac{a}{7}}{\frac{1}{4}}
Whakahekea te hautanga \frac{10}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{5}{3}=\frac{\frac{7}{35}-\frac{5a}{35}}{\frac{1}{4}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 5 me 7 ko 35. Whakareatia \frac{1}{5} ki te \frac{7}{7}. Whakareatia \frac{a}{7} ki te \frac{5}{5}.
\frac{5}{3}=\frac{\frac{7-5a}{35}}{\frac{1}{4}}
Tā te mea he rite te tauraro o \frac{7}{35} me \frac{5a}{35}, me tango rāua mā te tango i ō raua taurunga.
\frac{5}{3}=\frac{\frac{1}{5}-\frac{1}{7}a}{\frac{1}{4}}
Whakawehea ia wā o 7-5a ki te 35, kia riro ko \frac{1}{5}-\frac{1}{7}a.
\frac{5}{3}=\frac{\frac{1}{5}}{\frac{1}{4}}+\frac{-\frac{1}{7}a}{\frac{1}{4}}
Whakawehea ia wā o \frac{1}{5}-\frac{1}{7}a ki te \frac{1}{4}, kia riro ko \frac{\frac{1}{5}}{\frac{1}{4}}+\frac{-\frac{1}{7}a}{\frac{1}{4}}.
\frac{5}{3}=\frac{1}{5}\times 4+\frac{-\frac{1}{7}a}{\frac{1}{4}}
Whakawehe \frac{1}{5} ki te \frac{1}{4} mā te whakarea \frac{1}{5} ki te tau huripoki o \frac{1}{4}.
\frac{5}{3}=\frac{4}{5}+\frac{-\frac{1}{7}a}{\frac{1}{4}}
Whakareatia te \frac{1}{5} ki te 4, ka \frac{4}{5}.
\frac{5}{3}=\frac{4}{5}-\frac{4}{7}a
Whakawehea te -\frac{1}{7}a ki te \frac{1}{4}, kia riro ko -\frac{4}{7}a.
\frac{4}{5}-\frac{4}{7}a=\frac{5}{3}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-\frac{4}{7}a=\frac{5}{3}-\frac{4}{5}
Tangohia te \frac{4}{5} mai i ngā taha e rua.
-\frac{4}{7}a=\frac{25}{15}-\frac{12}{15}
Ko te maha noa iti rawa atu o 3 me 5 ko 15. Me tahuri \frac{5}{3} me \frac{4}{5} ki te hautau me te tautūnga 15.
-\frac{4}{7}a=\frac{25-12}{15}
Tā te mea he rite te tauraro o \frac{25}{15} me \frac{12}{15}, me tango rāua mā te tango i ō raua taurunga.
-\frac{4}{7}a=\frac{13}{15}
Tangohia te 12 i te 25, ka 13.
a=\frac{13}{15}\left(-\frac{7}{4}\right)
Me whakarea ngā taha e rua ki te -\frac{7}{4}, te tau utu o -\frac{4}{7}.
a=\frac{13\left(-7\right)}{15\times 4}
Me whakarea te \frac{13}{15} ki te -\frac{7}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
a=\frac{-91}{60}
Mahia ngā whakarea i roto i te hautanga \frac{13\left(-7\right)}{15\times 4}.
a=-\frac{91}{60}
Ka taea te hautanga \frac{-91}{60} te tuhi anō ko -\frac{91}{60} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}