Aromātai
\frac{37}{30}\approx 1.233333333
Tauwehe
\frac{37}{2 \cdot 3 \cdot 5} = 1\frac{7}{30} = 1.2333333333333334
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{3}\times \frac{3}{2}+\frac{2}{15}+\frac{3}{5}
Whakawehe \frac{1}{3} ki te \frac{2}{3} mā te whakarea \frac{1}{3} ki te tau huripoki o \frac{2}{3}.
\frac{1\times 3}{3\times 2}+\frac{2}{15}+\frac{3}{5}
Me whakarea te \frac{1}{3} ki te \frac{3}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1}{2}+\frac{2}{15}+\frac{3}{5}
Me whakakore tahi te 3 i te taurunga me te tauraro.
\frac{15}{30}+\frac{4}{30}+\frac{3}{5}
Ko te maha noa iti rawa atu o 2 me 15 ko 30. Me tahuri \frac{1}{2} me \frac{2}{15} ki te hautau me te tautūnga 30.
\frac{15+4}{30}+\frac{3}{5}
Tā te mea he rite te tauraro o \frac{15}{30} me \frac{4}{30}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{19}{30}+\frac{3}{5}
Tāpirihia te 15 ki te 4, ka 19.
\frac{19}{30}+\frac{18}{30}
Ko te maha noa iti rawa atu o 30 me 5 ko 30. Me tahuri \frac{19}{30} me \frac{3}{5} ki te hautau me te tautūnga 30.
\frac{19+18}{30}
Tā te mea he rite te tauraro o \frac{19}{30} me \frac{18}{30}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{37}{30}
Tāpirihia te 19 ki te 18, ka 37.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}