Aromātai
-\frac{325}{102}\approx -3.18627451
Tauwehe
-\frac{325}{102} = -3\frac{19}{102} = -3.1862745098039214
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{1}{3}\times \frac{1}{3}+0.25}{\frac{1}{3}\left(\frac{33}{50}-1\right)}
Tātaihia te 3 mā te pū o -1, kia riro ko \frac{1}{3}.
\frac{\frac{1}{9}+0.25}{\frac{1}{3}\left(\frac{33}{50}-1\right)}
Whakareatia te \frac{1}{3} ki te \frac{1}{3}, ka \frac{1}{9}.
\frac{\frac{13}{36}}{\frac{1}{3}\left(\frac{33}{50}-1\right)}
Tāpirihia te \frac{1}{9} ki te 0.25, ka \frac{13}{36}.
\frac{\frac{13}{36}}{\frac{1}{3}\left(-\frac{17}{50}\right)}
Tangohia te 1 i te \frac{33}{50}, ka -\frac{17}{50}.
\frac{\frac{13}{36}}{-\frac{17}{150}}
Whakareatia te \frac{1}{3} ki te -\frac{17}{50}, ka -\frac{17}{150}.
\frac{13}{36}\left(-\frac{150}{17}\right)
Whakawehe \frac{13}{36} ki te -\frac{17}{150} mā te whakarea \frac{13}{36} ki te tau huripoki o -\frac{17}{150}.
-\frac{325}{102}
Whakareatia te \frac{13}{36} ki te -\frac{150}{17}, ka -\frac{325}{102}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}