Aromātai
\frac{3}{2}=1.5
Tauwehe
\frac{3}{2} = 1\frac{1}{2} = 1.5
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{1}{2}-\frac{2}{2}+2\times 1}{\frac{1}{\sqrt{3}}\times \frac{\sqrt{3}}{1}}
Me tahuri te 1 ki te hautau \frac{2}{2}.
\frac{\frac{1-2}{2}+2\times 1}{\frac{1}{\sqrt{3}}\times \frac{\sqrt{3}}{1}}
Tā te mea he rite te tauraro o \frac{1}{2} me \frac{2}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{-\frac{1}{2}+2\times 1}{\frac{1}{\sqrt{3}}\times \frac{\sqrt{3}}{1}}
Tangohia te 2 i te 1, ka -1.
\frac{-\frac{1}{2}+2}{\frac{1}{\sqrt{3}}\times \frac{\sqrt{3}}{1}}
Whakareatia te 2 ki te 1, ka 2.
\frac{-\frac{1}{2}+\frac{4}{2}}{\frac{1}{\sqrt{3}}\times \frac{\sqrt{3}}{1}}
Me tahuri te 2 ki te hautau \frac{4}{2}.
\frac{\frac{-1+4}{2}}{\frac{1}{\sqrt{3}}\times \frac{\sqrt{3}}{1}}
Tā te mea he rite te tauraro o -\frac{1}{2} me \frac{4}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{3}{2}}{\frac{1}{\sqrt{3}}\times \frac{\sqrt{3}}{1}}
Tāpirihia te -1 ki te 4, ka 3.
\frac{\frac{3}{2}}{\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\times \frac{\sqrt{3}}{1}}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{\frac{3}{2}}{\frac{\sqrt{3}}{3}\times \frac{\sqrt{3}}{1}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{\frac{3}{2}}{\frac{\sqrt{3}}{3}\sqrt{3}}
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
\frac{\frac{3}{2}}{\frac{\sqrt{3}\sqrt{3}}{3}}
Tuhia te \frac{\sqrt{3}}{3}\sqrt{3} hei hautanga kotahi.
\frac{3\times 3}{2\sqrt{3}\sqrt{3}}
Whakawehe \frac{3}{2} ki te \frac{\sqrt{3}\sqrt{3}}{3} mā te whakarea \frac{3}{2} ki te tau huripoki o \frac{\sqrt{3}\sqrt{3}}{3}.
\frac{3\times 3\sqrt{3}}{2\left(\sqrt{3}\right)^{2}\sqrt{3}}
Whakangāwaritia te tauraro o \frac{3\times 3}{2\sqrt{3}\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{3\times 3\sqrt{3}}{2\times 3\sqrt{3}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{3\times 3}{2\times 3}
Me whakakore tahi te \sqrt{3} i te taurunga me te tauraro.
\frac{9}{2\times 3}
Whakareatia te 3 ki te 3, ka 9.
\frac{9}{6}
Whakareatia te 2 ki te 3, ka 6.
\frac{3}{2}
Whakahekea te hautanga \frac{9}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}