Aromātai
\frac{\sqrt{2}+1-2\sqrt{3}}{2}\approx -0.524944026
Tauwehe
\frac{\sqrt{2} + 1 - 2 \sqrt{3}}{2} = -0.5249440263823297
Tohaina
Kua tāruatia ki te papatopenga
\frac{\sqrt{2}}{2}+\frac{1}{2}-\frac{\frac{\sqrt{3}}{2}}{1}-\frac{\frac{\sqrt{3}}{2}}{1}
Whakawehe \frac{1}{2} ki te \frac{1}{\sqrt{2}} mā te whakarea \frac{1}{2} ki te tau huripoki o \frac{1}{\sqrt{2}}.
\frac{\sqrt{2}}{2}+\frac{1}{2}-\frac{\sqrt{3}}{2}-\frac{\frac{\sqrt{3}}{2}}{1}
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
\frac{\sqrt{2}}{2}+\frac{1}{2}-\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{2}
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
\frac{\sqrt{2}}{2}+\frac{1}{2}-\sqrt{3}
Pahekotia te -\frac{\sqrt{3}}{2} me -\frac{\sqrt{3}}{2}, ka -\sqrt{3}.
\frac{\sqrt{2}+1}{2}-\sqrt{3}
Tā te mea he rite te tauraro o \frac{\sqrt{2}}{2} me \frac{1}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\sqrt{2}+1}{2}-\frac{2\sqrt{3}}{2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia \sqrt{3} ki te \frac{2}{2}.
\frac{\sqrt{2}+1-2\sqrt{3}}{2}
Tā te mea he rite te tauraro o \frac{\sqrt{2}+1}{2} me \frac{2\sqrt{3}}{2}, me tango rāua mā te tango i ō raua taurunga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}