Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Tohaina

\frac{\sqrt{2}}{2}+\frac{1}{2}-\frac{\frac{\sqrt{3}}{2}}{1}-\frac{\frac{\sqrt{3}}{2}}{1}
Whakawehe \frac{1}{2} ki te \frac{1}{\sqrt{2}} mā te whakarea \frac{1}{2} ki te tau huripoki o \frac{1}{\sqrt{2}}.
\frac{\sqrt{2}}{2}+\frac{1}{2}-\frac{\sqrt{3}}{2}-\frac{\frac{\sqrt{3}}{2}}{1}
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
\frac{\sqrt{2}}{2}+\frac{1}{2}-\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{2}
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
\frac{\sqrt{2}}{2}+\frac{1}{2}-\sqrt{3}
Pahekotia te -\frac{\sqrt{3}}{2} me -\frac{\sqrt{3}}{2}, ka -\sqrt{3}.
\frac{\sqrt{2}+1}{2}-\sqrt{3}
Tā te mea he rite te tauraro o \frac{\sqrt{2}}{2} me \frac{1}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\sqrt{2}+1}{2}-\frac{2\sqrt{3}}{2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia \sqrt{3} ki te \frac{2}{2}.
\frac{\sqrt{2}+1-2\sqrt{3}}{2}
Tā te mea he rite te tauraro o \frac{\sqrt{2}+1}{2} me \frac{2\sqrt{3}}{2}, me tango rāua mā te tango i ō raua taurunga.