Aromātai
\frac{2\sqrt{2}-\sqrt{3}}{5}\approx 0.219275263
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-\frac{1}{\sqrt{3}}}{1-\frac{1}{\sqrt{6}}}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{\frac{\sqrt{2}}{2}-\frac{1}{\sqrt{3}}}{1-\frac{1}{\sqrt{6}}}
Ko te pūrua o \sqrt{2} ko 2.
\frac{\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}{1-\frac{1}{\sqrt{6}}}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{3}}{1-\frac{1}{\sqrt{6}}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{\frac{3\sqrt{2}}{6}-\frac{2\sqrt{3}}{6}}{1-\frac{1}{\sqrt{6}}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2 me 3 ko 6. Whakareatia \frac{\sqrt{2}}{2} ki te \frac{3}{3}. Whakareatia \frac{\sqrt{3}}{3} ki te \frac{2}{2}.
\frac{\frac{3\sqrt{2}-2\sqrt{3}}{6}}{1-\frac{1}{\sqrt{6}}}
Tā te mea he rite te tauraro o \frac{3\sqrt{2}}{6} me \frac{2\sqrt{3}}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{3\sqrt{2}-2\sqrt{3}}{6}}{1-\frac{\sqrt{6}}{\left(\sqrt{6}\right)^{2}}}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{6}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{6}.
\frac{\frac{3\sqrt{2}-2\sqrt{3}}{6}}{1-\frac{\sqrt{6}}{6}}
Ko te pūrua o \sqrt{6} ko 6.
\frac{\frac{3\sqrt{2}-2\sqrt{3}}{6}}{\frac{6}{6}-\frac{\sqrt{6}}{6}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{6}{6}.
\frac{\frac{3\sqrt{2}-2\sqrt{3}}{6}}{\frac{6-\sqrt{6}}{6}}
Tā te mea he rite te tauraro o \frac{6}{6} me \frac{\sqrt{6}}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\times 6}{6\left(6-\sqrt{6}\right)}
Whakawehe \frac{3\sqrt{2}-2\sqrt{3}}{6} ki te \frac{6-\sqrt{6}}{6} mā te whakarea \frac{3\sqrt{2}-2\sqrt{3}}{6} ki te tau huripoki o \frac{6-\sqrt{6}}{6}.
\frac{-2\sqrt{3}+3\sqrt{2}}{-\sqrt{6}+6}
Me whakakore tahi te 6 i te taurunga me te tauraro.
\frac{\left(-2\sqrt{3}+3\sqrt{2}\right)\left(-\sqrt{6}-6\right)}{\left(-\sqrt{6}+6\right)\left(-\sqrt{6}-6\right)}
Whakangāwaritia te tauraro o \frac{-2\sqrt{3}+3\sqrt{2}}{-\sqrt{6}+6} mā te whakarea i te taurunga me te tauraro ki te -\sqrt{6}-6.
\frac{\left(-2\sqrt{3}+3\sqrt{2}\right)\left(-\sqrt{6}-6\right)}{\left(-\sqrt{6}\right)^{2}-6^{2}}
Whakaarohia te \left(-\sqrt{6}+6\right)\left(-\sqrt{6}-6\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-2\sqrt{3}+3\sqrt{2}\right)\left(-\sqrt{6}-6\right)}{\left(-1\right)^{2}\left(\sqrt{6}\right)^{2}-6^{2}}
Whakarohaina te \left(-\sqrt{6}\right)^{2}.
\frac{\left(-2\sqrt{3}+3\sqrt{2}\right)\left(-\sqrt{6}-6\right)}{1\left(\sqrt{6}\right)^{2}-6^{2}}
Tātaihia te -1 mā te pū o 2, kia riro ko 1.
\frac{\left(-2\sqrt{3}+3\sqrt{2}\right)\left(-\sqrt{6}-6\right)}{1\times 6-6^{2}}
Ko te pūrua o \sqrt{6} ko 6.
\frac{\left(-2\sqrt{3}+3\sqrt{2}\right)\left(-\sqrt{6}-6\right)}{6-6^{2}}
Whakareatia te 1 ki te 6, ka 6.
\frac{\left(-2\sqrt{3}+3\sqrt{2}\right)\left(-\sqrt{6}-6\right)}{6-36}
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
\frac{\left(-2\sqrt{3}+3\sqrt{2}\right)\left(-\sqrt{6}-6\right)}{-30}
Tangohia te 36 i te 6, ka -30.
\frac{2\sqrt{3}\sqrt{6}+12\sqrt{3}-3\sqrt{2}\sqrt{6}-18\sqrt{2}}{-30}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o -2\sqrt{3}+3\sqrt{2} ki ia tau o -\sqrt{6}-6.
\frac{2\sqrt{3}\sqrt{3}\sqrt{2}+12\sqrt{3}-3\sqrt{2}\sqrt{6}-18\sqrt{2}}{-30}
Tauwehea te 6=3\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3\times 2} hei hua o ngā pūtake rua \sqrt{3}\sqrt{2}.
\frac{2\times 3\sqrt{2}+12\sqrt{3}-3\sqrt{2}\sqrt{6}-18\sqrt{2}}{-30}
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
\frac{6\sqrt{2}+12\sqrt{3}-3\sqrt{2}\sqrt{6}-18\sqrt{2}}{-30}
Whakareatia te 2 ki te 3, ka 6.
\frac{6\sqrt{2}+12\sqrt{3}-3\sqrt{2}\sqrt{2}\sqrt{3}-18\sqrt{2}}{-30}
Tauwehea te 6=2\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2\times 3} hei hua o ngā pūtake rua \sqrt{2}\sqrt{3}.
\frac{6\sqrt{2}+12\sqrt{3}-3\times 2\sqrt{3}-18\sqrt{2}}{-30}
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
\frac{6\sqrt{2}+12\sqrt{3}-6\sqrt{3}-18\sqrt{2}}{-30}
Whakareatia te -3 ki te 2, ka -6.
\frac{6\sqrt{2}+6\sqrt{3}-18\sqrt{2}}{-30}
Pahekotia te 12\sqrt{3} me -6\sqrt{3}, ka 6\sqrt{3}.
\frac{-12\sqrt{2}+6\sqrt{3}}{-30}
Pahekotia te 6\sqrt{2} me -18\sqrt{2}, ka -12\sqrt{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}