Aromātai
1
Tauwehe
1
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{\frac{4}{4}+\frac{1}{4}}{\frac{1}{2}}-\frac{1-\frac{1}{4}}{\frac{1}{3}}}{1+\frac{2}{3}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Me tahuri te 1 ki te hautau \frac{4}{4}.
\frac{\frac{\frac{4+1}{4}}{\frac{1}{2}}-\frac{1-\frac{1}{4}}{\frac{1}{3}}}{1+\frac{2}{3}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Tā te mea he rite te tauraro o \frac{4}{4} me \frac{1}{4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{\frac{5}{4}}{\frac{1}{2}}-\frac{1-\frac{1}{4}}{\frac{1}{3}}}{1+\frac{2}{3}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Tāpirihia te 4 ki te 1, ka 5.
\frac{\frac{5}{4}\times 2-\frac{1-\frac{1}{4}}{\frac{1}{3}}}{1+\frac{2}{3}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Whakawehe \frac{5}{4} ki te \frac{1}{2} mā te whakarea \frac{5}{4} ki te tau huripoki o \frac{1}{2}.
\frac{\frac{5\times 2}{4}-\frac{1-\frac{1}{4}}{\frac{1}{3}}}{1+\frac{2}{3}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Tuhia te \frac{5}{4}\times 2 hei hautanga kotahi.
\frac{\frac{10}{4}-\frac{1-\frac{1}{4}}{\frac{1}{3}}}{1+\frac{2}{3}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Whakareatia te 5 ki te 2, ka 10.
\frac{\frac{5}{2}-\frac{1-\frac{1}{4}}{\frac{1}{3}}}{1+\frac{2}{3}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Whakahekea te hautanga \frac{10}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{\frac{5}{2}-\frac{\frac{4}{4}-\frac{1}{4}}{\frac{1}{3}}}{1+\frac{2}{3}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Me tahuri te 1 ki te hautau \frac{4}{4}.
\frac{\frac{5}{2}-\frac{\frac{4-1}{4}}{\frac{1}{3}}}{1+\frac{2}{3}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Tā te mea he rite te tauraro o \frac{4}{4} me \frac{1}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{5}{2}-\frac{\frac{3}{4}}{\frac{1}{3}}}{1+\frac{2}{3}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Tangohia te 1 i te 4, ka 3.
\frac{\frac{5}{2}-\frac{3}{4}\times 3}{1+\frac{2}{3}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Whakawehe \frac{3}{4} ki te \frac{1}{3} mā te whakarea \frac{3}{4} ki te tau huripoki o \frac{1}{3}.
\frac{\frac{5}{2}-\frac{3\times 3}{4}}{1+\frac{2}{3}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Tuhia te \frac{3}{4}\times 3 hei hautanga kotahi.
\frac{\frac{5}{2}-\frac{9}{4}}{1+\frac{2}{3}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Whakareatia te 3 ki te 3, ka 9.
\frac{\frac{10}{4}-\frac{9}{4}}{1+\frac{2}{3}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Ko te maha noa iti rawa atu o 2 me 4 ko 4. Me tahuri \frac{5}{2} me \frac{9}{4} ki te hautau me te tautūnga 4.
\frac{\frac{10-9}{4}}{1+\frac{2}{3}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Tā te mea he rite te tauraro o \frac{10}{4} me \frac{9}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{1}{4}}{1+\frac{2}{3}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Tangohia te 9 i te 10, ka 1.
\frac{\frac{1}{4}}{\frac{3}{3}+\frac{2}{3}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Me tahuri te 1 ki te hautau \frac{3}{3}.
\frac{\frac{1}{4}}{\frac{3+2}{3}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Tā te mea he rite te tauraro o \frac{3}{3} me \frac{2}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{1}{4}}{\frac{5}{3}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Tāpirihia te 3 ki te 2, ka 5.
\frac{1}{4}\times \frac{3}{5}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Whakawehe \frac{1}{4} ki te \frac{5}{3} mā te whakarea \frac{1}{4} ki te tau huripoki o \frac{5}{3}.
\frac{1\times 3}{4\times 5}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Me whakarea te \frac{1}{4} ki te \frac{3}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{3}{20}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Mahia ngā whakarea i roto i te hautanga \frac{1\times 3}{4\times 5}.
\frac{3}{20}\left(\frac{30+1}{3}-\frac{3\times 3+2}{3}\right)
Whakareatia te 10 ki te 3, ka 30.
\frac{3}{20}\left(\frac{31}{3}-\frac{3\times 3+2}{3}\right)
Tāpirihia te 30 ki te 1, ka 31.
\frac{3}{20}\left(\frac{31}{3}-\frac{9+2}{3}\right)
Whakareatia te 3 ki te 3, ka 9.
\frac{3}{20}\left(\frac{31}{3}-\frac{11}{3}\right)
Tāpirihia te 9 ki te 2, ka 11.
\frac{3}{20}\times \frac{31-11}{3}
Tā te mea he rite te tauraro o \frac{31}{3} me \frac{11}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{3}{20}\times \frac{20}{3}
Tangohia te 11 i te 31, ka 20.
1
Me whakakore atu te \frac{3}{20} me tōna tau utu \frac{20}{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}