Aromātai
-\frac{1}{2}=-0.5
Tauwehe
-\frac{1}{2} = -0.5
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{\frac{3}{3}+\frac{1}{3}}{1+\frac{2}{2-\frac{1}{2}}}+\frac{2-\frac{1}{3}}{1-\frac{2}{1+\frac{1}{2}}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Me tahuri te 1 ki te hautau \frac{3}{3}.
\frac{\frac{\frac{3+1}{3}}{1+\frac{2}{2-\frac{1}{2}}}+\frac{2-\frac{1}{3}}{1-\frac{2}{1+\frac{1}{2}}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Tā te mea he rite te tauraro o \frac{3}{3} me \frac{1}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{\frac{4}{3}}{1+\frac{2}{2-\frac{1}{2}}}+\frac{2-\frac{1}{3}}{1-\frac{2}{1+\frac{1}{2}}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Tāpirihia te 3 ki te 1, ka 4.
\frac{\frac{\frac{4}{3}}{1+\frac{2}{\frac{4}{2}-\frac{1}{2}}}+\frac{2-\frac{1}{3}}{1-\frac{2}{1+\frac{1}{2}}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Me tahuri te 2 ki te hautau \frac{4}{2}.
\frac{\frac{\frac{4}{3}}{1+\frac{2}{\frac{4-1}{2}}}+\frac{2-\frac{1}{3}}{1-\frac{2}{1+\frac{1}{2}}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Tā te mea he rite te tauraro o \frac{4}{2} me \frac{1}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{\frac{4}{3}}{1+\frac{2}{\frac{3}{2}}}+\frac{2-\frac{1}{3}}{1-\frac{2}{1+\frac{1}{2}}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Tangohia te 1 i te 4, ka 3.
\frac{\frac{\frac{4}{3}}{1+2\times \frac{2}{3}}+\frac{2-\frac{1}{3}}{1-\frac{2}{1+\frac{1}{2}}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Whakawehe 2 ki te \frac{3}{2} mā te whakarea 2 ki te tau huripoki o \frac{3}{2}.
\frac{\frac{\frac{4}{3}}{1+\frac{2\times 2}{3}}+\frac{2-\frac{1}{3}}{1-\frac{2}{1+\frac{1}{2}}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Tuhia te 2\times \frac{2}{3} hei hautanga kotahi.
\frac{\frac{\frac{4}{3}}{1+\frac{4}{3}}+\frac{2-\frac{1}{3}}{1-\frac{2}{1+\frac{1}{2}}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Whakareatia te 2 ki te 2, ka 4.
\frac{\frac{\frac{4}{3}}{\frac{3}{3}+\frac{4}{3}}+\frac{2-\frac{1}{3}}{1-\frac{2}{1+\frac{1}{2}}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Me tahuri te 1 ki te hautau \frac{3}{3}.
\frac{\frac{\frac{4}{3}}{\frac{3+4}{3}}+\frac{2-\frac{1}{3}}{1-\frac{2}{1+\frac{1}{2}}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Tā te mea he rite te tauraro o \frac{3}{3} me \frac{4}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{\frac{4}{3}}{\frac{7}{3}}+\frac{2-\frac{1}{3}}{1-\frac{2}{1+\frac{1}{2}}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Tāpirihia te 3 ki te 4, ka 7.
\frac{\frac{4}{3}\times \frac{3}{7}+\frac{2-\frac{1}{3}}{1-\frac{2}{1+\frac{1}{2}}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Whakawehe \frac{4}{3} ki te \frac{7}{3} mā te whakarea \frac{4}{3} ki te tau huripoki o \frac{7}{3}.
\frac{\frac{4\times 3}{3\times 7}+\frac{2-\frac{1}{3}}{1-\frac{2}{1+\frac{1}{2}}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Me whakarea te \frac{4}{3} ki te \frac{3}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\frac{4}{7}+\frac{2-\frac{1}{3}}{1-\frac{2}{1+\frac{1}{2}}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Me whakakore tahi te 3 i te taurunga me te tauraro.
\frac{\frac{4}{7}+\frac{\frac{6}{3}-\frac{1}{3}}{1-\frac{2}{1+\frac{1}{2}}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Me tahuri te 2 ki te hautau \frac{6}{3}.
\frac{\frac{4}{7}+\frac{\frac{6-1}{3}}{1-\frac{2}{1+\frac{1}{2}}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Tā te mea he rite te tauraro o \frac{6}{3} me \frac{1}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{4}{7}+\frac{\frac{5}{3}}{1-\frac{2}{1+\frac{1}{2}}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Tangohia te 1 i te 6, ka 5.
\frac{\frac{4}{7}+\frac{\frac{5}{3}}{1-\frac{2}{\frac{2}{2}+\frac{1}{2}}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Me tahuri te 1 ki te hautau \frac{2}{2}.
\frac{\frac{4}{7}+\frac{\frac{5}{3}}{1-\frac{2}{\frac{2+1}{2}}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Tā te mea he rite te tauraro o \frac{2}{2} me \frac{1}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{4}{7}+\frac{\frac{5}{3}}{1-\frac{2}{\frac{3}{2}}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Tāpirihia te 2 ki te 1, ka 3.
\frac{\frac{4}{7}+\frac{\frac{5}{3}}{1-2\times \frac{2}{3}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Whakawehe 2 ki te \frac{3}{2} mā te whakarea 2 ki te tau huripoki o \frac{3}{2}.
\frac{\frac{4}{7}+\frac{\frac{5}{3}}{1-\frac{2\times 2}{3}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Tuhia te 2\times \frac{2}{3} hei hautanga kotahi.
\frac{\frac{4}{7}+\frac{\frac{5}{3}}{1-\frac{4}{3}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Whakareatia te 2 ki te 2, ka 4.
\frac{\frac{4}{7}+\frac{\frac{5}{3}}{\frac{3}{3}-\frac{4}{3}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Me tahuri te 1 ki te hautau \frac{3}{3}.
\frac{\frac{4}{7}+\frac{\frac{5}{3}}{\frac{3-4}{3}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Tā te mea he rite te tauraro o \frac{3}{3} me \frac{4}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{4}{7}+\frac{\frac{5}{3}}{-\frac{1}{3}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Tangohia te 4 i te 3, ka -1.
\frac{\frac{4}{7}+\frac{5}{3}\left(-3\right)}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Whakawehe \frac{5}{3} ki te -\frac{1}{3} mā te whakarea \frac{5}{3} ki te tau huripoki o -\frac{1}{3}.
\frac{\frac{4}{7}+\frac{5\left(-3\right)}{3}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Tuhia te \frac{5}{3}\left(-3\right) hei hautanga kotahi.
\frac{\frac{4}{7}+\frac{-15}{3}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Whakareatia te 5 ki te -3, ka -15.
\frac{\frac{4}{7}-5}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Whakawehea te -15 ki te 3, kia riro ko -5.
\frac{\frac{4}{7}-\frac{35}{7}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Me tahuri te 5 ki te hautau \frac{35}{7}.
\frac{\frac{4-35}{7}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Tā te mea he rite te tauraro o \frac{4}{7} me \frac{35}{7}, me tango rāua mā te tango i ō raua taurunga.
\frac{-\frac{31}{7}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Tangohia te 35 i te 4, ka -31.
\frac{-\frac{31}{7}}{7+\frac{1}{1-\frac{1}{\frac{6}{6}+\frac{7}{6}}}}
Me tahuri te 1 ki te hautau \frac{6}{6}.
\frac{-\frac{31}{7}}{7+\frac{1}{1-\frac{1}{\frac{6+7}{6}}}}
Tā te mea he rite te tauraro o \frac{6}{6} me \frac{7}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-\frac{31}{7}}{7+\frac{1}{1-\frac{1}{\frac{13}{6}}}}
Tāpirihia te 6 ki te 7, ka 13.
\frac{-\frac{31}{7}}{7+\frac{1}{1-1\times \frac{6}{13}}}
Whakawehe 1 ki te \frac{13}{6} mā te whakarea 1 ki te tau huripoki o \frac{13}{6}.
\frac{-\frac{31}{7}}{7+\frac{1}{1-\frac{6}{13}}}
Whakareatia te 1 ki te \frac{6}{13}, ka \frac{6}{13}.
\frac{-\frac{31}{7}}{7+\frac{1}{\frac{13}{13}-\frac{6}{13}}}
Me tahuri te 1 ki te hautau \frac{13}{13}.
\frac{-\frac{31}{7}}{7+\frac{1}{\frac{13-6}{13}}}
Tā te mea he rite te tauraro o \frac{13}{13} me \frac{6}{13}, me tango rāua mā te tango i ō raua taurunga.
\frac{-\frac{31}{7}}{7+\frac{1}{\frac{7}{13}}}
Tangohia te 6 i te 13, ka 7.
\frac{-\frac{31}{7}}{7+1\times \frac{13}{7}}
Whakawehe 1 ki te \frac{7}{13} mā te whakarea 1 ki te tau huripoki o \frac{7}{13}.
\frac{-\frac{31}{7}}{7+\frac{13}{7}}
Whakareatia te 1 ki te \frac{13}{7}, ka \frac{13}{7}.
\frac{-\frac{31}{7}}{\frac{49}{7}+\frac{13}{7}}
Me tahuri te 7 ki te hautau \frac{49}{7}.
\frac{-\frac{31}{7}}{\frac{49+13}{7}}
Tā te mea he rite te tauraro o \frac{49}{7} me \frac{13}{7}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-\frac{31}{7}}{\frac{62}{7}}
Tāpirihia te 49 ki te 13, ka 62.
-\frac{31}{7}\times \frac{7}{62}
Whakawehe -\frac{31}{7} ki te \frac{62}{7} mā te whakarea -\frac{31}{7} ki te tau huripoki o \frac{62}{7}.
\frac{-31\times 7}{7\times 62}
Me whakarea te -\frac{31}{7} ki te \frac{7}{62} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-31}{62}
Me whakakore tahi te 7 i te taurunga me te tauraro.
-\frac{1}{2}
Whakahekea te hautanga \frac{-31}{62} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 31.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}