Aromātai
-\frac{1725}{1034}\approx -1.66827853
Tauwehe
-\frac{1725}{1034} = -1\frac{691}{1034} = -1.6682785299806577
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{1+\frac{1}{2}}{3}+\frac{1-\frac{1}{3}}{2}}{\frac{1}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Whakawehea te 2^{1} ki te 2, kia riro ko 1.
\frac{\frac{\frac{2}{2}+\frac{1}{2}}{3}+\frac{1-\frac{1}{3}}{2}}{\frac{1}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Me tahuri te 1 ki te hautau \frac{2}{2}.
\frac{\frac{\frac{2+1}{2}}{3}+\frac{1-\frac{1}{3}}{2}}{\frac{1}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Tā te mea he rite te tauraro o \frac{2}{2} me \frac{1}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{\frac{3}{2}}{3}+\frac{1-\frac{1}{3}}{2}}{\frac{1}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Tāpirihia te 2 ki te 1, ka 3.
\frac{\frac{3}{2\times 3}+\frac{1-\frac{1}{3}}{2}}{\frac{1}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Tuhia te \frac{\frac{3}{2}}{3} hei hautanga kotahi.
\frac{\frac{1}{2}+\frac{1-\frac{1}{3}}{2}}{\frac{1}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Me whakakore tahi te 3 i te taurunga me te tauraro.
\frac{\frac{1}{2}+\frac{\frac{3}{3}-\frac{1}{3}}{2}}{\frac{1}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Me tahuri te 1 ki te hautau \frac{3}{3}.
\frac{\frac{1}{2}+\frac{\frac{3-1}{3}}{2}}{\frac{1}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Tā te mea he rite te tauraro o \frac{3}{3} me \frac{1}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{1}{2}+\frac{\frac{2}{3}}{2}}{\frac{1}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Tangohia te 1 i te 3, ka 2.
\frac{\frac{1}{2}+\frac{2}{3\times 2}}{\frac{1}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Tuhia te \frac{\frac{2}{3}}{2} hei hautanga kotahi.
\frac{\frac{1}{2}+\frac{1}{3}}{\frac{1}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{\frac{3}{6}+\frac{2}{6}}{\frac{1}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Ko te maha noa iti rawa atu o 2 me 3 ko 6. Me tahuri \frac{1}{2} me \frac{1}{3} ki te hautau me te tautūnga 6.
\frac{\frac{3+2}{6}}{\frac{1}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Tā te mea he rite te tauraro o \frac{3}{6} me \frac{2}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{5}{6}}{\frac{1}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Tāpirihia te 3 ki te 2, ka 5.
\frac{\frac{5}{6}}{1\times \frac{6}{5}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Whakawehe 1 ki te \frac{5}{6} mā te whakarea 1 ki te tau huripoki o \frac{5}{6}.
\frac{\frac{5}{6}}{\frac{6}{5}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Whakareatia te 1 ki te \frac{6}{5}, ka \frac{6}{5}.
\frac{\frac{5}{6}}{\frac{6}{5}-\frac{1}{3}\times 8}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Whakawehe \frac{1}{3} ki te \frac{1}{8} mā te whakarea \frac{1}{3} ki te tau huripoki o \frac{1}{8}.
\frac{\frac{5}{6}}{\frac{6}{5}-\frac{8}{3}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Whakareatia te \frac{1}{3} ki te 8, ka \frac{8}{3}.
\frac{\frac{5}{6}}{\frac{18}{15}-\frac{40}{15}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Ko te maha noa iti rawa atu o 5 me 3 ko 15. Me tahuri \frac{6}{5} me \frac{8}{3} ki te hautau me te tautūnga 15.
\frac{\frac{5}{6}}{\frac{18-40}{15}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Tā te mea he rite te tauraro o \frac{18}{15} me \frac{40}{15}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{5}{6}}{-\frac{22}{15}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Tangohia te 40 i te 18, ka -22.
\frac{5}{6}\left(-\frac{15}{22}\right)\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Whakawehe \frac{5}{6} ki te -\frac{22}{15} mā te whakarea \frac{5}{6} ki te tau huripoki o -\frac{22}{15}.
\frac{5\left(-15\right)}{6\times 22}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Me whakarea te \frac{5}{6} ki te -\frac{15}{22} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-75}{132}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Mahia ngā whakarea i roto i te hautanga \frac{5\left(-15\right)}{6\times 22}.
-\frac{25}{44}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Whakahekea te hautanga \frac{-75}{132} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
-\frac{25}{44}\times \frac{23^{1}\times 12}{2\times 47}
Whakawehe \frac{23^{1}}{2} ki te \frac{47}{12} mā te whakarea \frac{23^{1}}{2} ki te tau huripoki o \frac{47}{12}.
-\frac{25}{44}\times \frac{6\times 23^{1}}{47}
Me whakakore tahi te 2 i te taurunga me te tauraro.
-\frac{25}{44}\times \frac{6\times 23}{47}
Tātaihia te 23 mā te pū o 1, kia riro ko 23.
-\frac{25}{44}\times \frac{138}{47}
Whakareatia te 6 ki te 23, ka 138.
\frac{-25\times 138}{44\times 47}
Me whakarea te -\frac{25}{44} ki te \frac{138}{47} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-3450}{2068}
Mahia ngā whakarea i roto i te hautanga \frac{-25\times 138}{44\times 47}.
-\frac{1725}{1034}
Whakahekea te hautanga \frac{-3450}{2068} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}