Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\frac{-5}{b-5}-\frac{3\left(b-5\right)}{b-5}}{\frac{10}{b-5}+6}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 3 ki te \frac{b-5}{b-5}.
\frac{\frac{-5-3\left(b-5\right)}{b-5}}{\frac{10}{b-5}+6}
Tā te mea he rite te tauraro o \frac{-5}{b-5} me \frac{3\left(b-5\right)}{b-5}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{-5-3b+15}{b-5}}{\frac{10}{b-5}+6}
Mahia ngā whakarea i roto o -5-3\left(b-5\right).
\frac{\frac{10-3b}{b-5}}{\frac{10}{b-5}+6}
Whakakotahitia ngā kupu rite i -5-3b+15.
\frac{\frac{10-3b}{b-5}}{\frac{10}{b-5}+\frac{6\left(b-5\right)}{b-5}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 6 ki te \frac{b-5}{b-5}.
\frac{\frac{10-3b}{b-5}}{\frac{10+6\left(b-5\right)}{b-5}}
Tā te mea he rite te tauraro o \frac{10}{b-5} me \frac{6\left(b-5\right)}{b-5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{10-3b}{b-5}}{\frac{10+6b-30}{b-5}}
Mahia ngā whakarea i roto o 10+6\left(b-5\right).
\frac{\frac{10-3b}{b-5}}{\frac{-20+6b}{b-5}}
Whakakotahitia ngā kupu rite i 10+6b-30.
\frac{\left(10-3b\right)\left(b-5\right)}{\left(b-5\right)\left(-20+6b\right)}
Whakawehe \frac{10-3b}{b-5} ki te \frac{-20+6b}{b-5} mā te whakarea \frac{10-3b}{b-5} ki te tau huripoki o \frac{-20+6b}{b-5}.
\frac{-3b+10}{6b-20}
Me whakakore tahi te b-5 i te taurunga me te tauraro.
\frac{-3b+10}{2\left(3b-10\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{-\left(3b-10\right)}{2\left(3b-10\right)}
Unuhia te tohu tōraro i roto o 10-3b.
\frac{-1}{2}
Me whakakore tahi te 3b-10 i te taurunga me te tauraro.
-\frac{1}{2}
Ka taea te hautanga \frac{-1}{2} te tuhi anō ko -\frac{1}{2} mā te tango i te tohu tōraro.