Aromātai
2
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{1}{2}}{1+\sin(60)}+\frac{1}{\tan(30)}
Tīkina te uara \cos(60) mai i te ripanga uara pākoki.
\frac{\frac{1}{2}}{1+\frac{\sqrt{3}}{2}}+\frac{1}{\tan(30)}
Tīkina te uara \sin(60) mai i te ripanga uara pākoki.
\frac{\frac{1}{2}}{\frac{2}{2}+\frac{\sqrt{3}}{2}}+\frac{1}{\tan(30)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{2}{2}.
\frac{\frac{1}{2}}{\frac{2+\sqrt{3}}{2}}+\frac{1}{\tan(30)}
Tā te mea he rite te tauraro o \frac{2}{2} me \frac{\sqrt{3}}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{2}{2\left(2+\sqrt{3}\right)}+\frac{1}{\tan(30)}
Whakawehe \frac{1}{2} ki te \frac{2+\sqrt{3}}{2} mā te whakarea \frac{1}{2} ki te tau huripoki o \frac{2+\sqrt{3}}{2}.
\frac{2}{2\left(2+\sqrt{3}\right)}+\frac{1}{\frac{\sqrt{3}}{3}}
Tīkina te uara \tan(30) mai i te ripanga uara pākoki.
\frac{2}{2\left(2+\sqrt{3}\right)}+\frac{3}{\sqrt{3}}
Whakawehe 1 ki te \frac{\sqrt{3}}{3} mā te whakarea 1 ki te tau huripoki o \frac{\sqrt{3}}{3}.
\frac{2}{2\left(2+\sqrt{3}\right)}+\frac{3\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Whakangāwaritia te tauraro o \frac{3}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{2}{2\left(2+\sqrt{3}\right)}+\frac{3\sqrt{3}}{3}
Ko te pūrua o \sqrt{3} ko 3.
\frac{2}{2\left(2+\sqrt{3}\right)}+\sqrt{3}
Me whakakore te 3 me te 3.
\frac{2}{2\left(2+\sqrt{3}\right)}+\frac{\sqrt{3}\times 2\left(2+\sqrt{3}\right)}{2\left(2+\sqrt{3}\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia \sqrt{3} ki te \frac{2\left(2+\sqrt{3}\right)}{2\left(2+\sqrt{3}\right)}.
\frac{2+\sqrt{3}\times 2\left(2+\sqrt{3}\right)}{2\left(2+\sqrt{3}\right)}
Tā te mea he rite te tauraro o \frac{2}{2\left(2+\sqrt{3}\right)} me \frac{\sqrt{3}\times 2\left(2+\sqrt{3}\right)}{2\left(2+\sqrt{3}\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{2+4\sqrt{3}+6}{2\left(2+\sqrt{3}\right)}
Mahia ngā whakarea i roto o 2+\sqrt{3}\times 2\left(2+\sqrt{3}\right).
\frac{8+4\sqrt{3}}{2\left(2+\sqrt{3}\right)}
Mahia ngā tātaitai i roto o 2+4\sqrt{3}+6.
\frac{8+4\sqrt{3}}{2\sqrt{3}+4}
Whakarohaina te 2\left(2+\sqrt{3}\right).
\frac{\left(8+4\sqrt{3}\right)\left(2\sqrt{3}-4\right)}{\left(2\sqrt{3}+4\right)\left(2\sqrt{3}-4\right)}
Whakangāwaritia te tauraro o \frac{8+4\sqrt{3}}{2\sqrt{3}+4} mā te whakarea i te taurunga me te tauraro ki te 2\sqrt{3}-4.
\frac{\left(8+4\sqrt{3}\right)\left(2\sqrt{3}-4\right)}{\left(2\sqrt{3}\right)^{2}-4^{2}}
Whakaarohia te \left(2\sqrt{3}+4\right)\left(2\sqrt{3}-4\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(8+4\sqrt{3}\right)\left(2\sqrt{3}-4\right)}{2^{2}\left(\sqrt{3}\right)^{2}-4^{2}}
Whakarohaina te \left(2\sqrt{3}\right)^{2}.
\frac{\left(8+4\sqrt{3}\right)\left(2\sqrt{3}-4\right)}{4\left(\sqrt{3}\right)^{2}-4^{2}}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{\left(8+4\sqrt{3}\right)\left(2\sqrt{3}-4\right)}{4\times 3-4^{2}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{\left(8+4\sqrt{3}\right)\left(2\sqrt{3}-4\right)}{12-4^{2}}
Whakareatia te 4 ki te 3, ka 12.
\frac{\left(8+4\sqrt{3}\right)\left(2\sqrt{3}-4\right)}{12-16}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
\frac{\left(8+4\sqrt{3}\right)\left(2\sqrt{3}-4\right)}{-4}
Tangohia te 16 i te 12, ka -4.
\frac{-32+8\left(\sqrt{3}\right)^{2}}{-4}
Whakamahia te āhuatanga tuaritanga hei whakarea te 8+4\sqrt{3} ki te 2\sqrt{3}-4 ka whakakotahi i ngā kupu rite.
\frac{-32+8\times 3}{-4}
Ko te pūrua o \sqrt{3} ko 3.
\frac{-32+24}{-4}
Whakareatia te 8 ki te 3, ka 24.
\frac{-8}{-4}
Tāpirihia te -32 ki te 24, ka -8.
2
Whakawehea te -8 ki te -4, kia riro ko 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}