Manatoko
teka
Pātaitai
Trigonometry
5 raruraru e ōrite ana ki:
\frac { \cos 6 } { \tan 12 } = \frac { \csc 12 } { \tan 99 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{0.9945218953682733}{0.2125565616700221} = \frac{4.809734344744132}{-6.313751514675037}
Evaluate trigonometric functions in the problem
\frac{9945218953682733}{2125565616700221}=\frac{4.809734344744132}{-6.313751514675037}
Whakarohaina te \frac{0.9945218953682733}{0.2125565616700221} mā te whakarea i te taurunga me te tauraro ki te 10000000000000000.
\frac{3315072984560911}{708521872233407}=\frac{4.809734344744132}{-6.313751514675037}
Whakahekea te hautanga \frac{9945218953682733}{2125565616700221} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{3315072984560911}{708521872233407}=\frac{4809734344744132}{-6313751514675037}
Whakarohaina te \frac{4.809734344744132}{-6.313751514675037} mā te whakarea i te taurunga me te tauraro ki te 1000000000000000.
\frac{3315072984560911}{708521872233407}=-\frac{4809734344744132}{6313751514675037}
Ka taea te hautanga \frac{4809734344744132}{-6313751514675037} te tuhi anō ko -\frac{4809734344744132}{6313751514675037} mā te tango i te tohu tōraro.
\frac{20930547077529747373748297678707}{4473431043994066486695020361059}=-\frac{3407801982883431429858797617724}{4473431043994066486695020361059}
Ko te maha noa iti rawa atu o 708521872233407 me 6313751514675037 ko 4473431043994066486695020361059. Me tahuri \frac{3315072984560911}{708521872233407} me -\frac{4809734344744132}{6313751514675037} ki te hautau me te tautūnga 4473431043994066486695020361059.
\text{false}
Whakatauritea te \frac{20930547077529747373748297678707}{4473431043994066486695020361059} me te -\frac{3407801982883431429858797617724}{4473431043994066486695020361059}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}