Aromātai
-\frac{5}{42}\approx -0.119047619
Tauwehe
-\frac{5}{42} = -0.11904761904761904
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(\frac{1}{2}-\left(-\frac{3}{4}-\left(-1-\frac{1}{6}\right)\right)\right)\sqrt{2-\frac{7}{4}}}{\left(-\frac{5}{3}\right)^{-1}+\frac{1}{2}-\left(-2\right)^{-2}}
Tāpirihia te -1 ki te \frac{3}{2}, ka \frac{1}{2}.
\frac{\left(\frac{1}{2}-\left(-\frac{3}{4}-\left(-\frac{7}{6}\right)\right)\right)\sqrt{2-\frac{7}{4}}}{\left(-\frac{5}{3}\right)^{-1}+\frac{1}{2}-\left(-2\right)^{-2}}
Tangohia te \frac{1}{6} i te -1, ka -\frac{7}{6}.
\frac{\left(\frac{1}{2}-\left(-\frac{3}{4}+\frac{7}{6}\right)\right)\sqrt{2-\frac{7}{4}}}{\left(-\frac{5}{3}\right)^{-1}+\frac{1}{2}-\left(-2\right)^{-2}}
Ko te tauaro o -\frac{7}{6} ko \frac{7}{6}.
\frac{\left(\frac{1}{2}-\frac{5}{12}\right)\sqrt{2-\frac{7}{4}}}{\left(-\frac{5}{3}\right)^{-1}+\frac{1}{2}-\left(-2\right)^{-2}}
Tāpirihia te -\frac{3}{4} ki te \frac{7}{6}, ka \frac{5}{12}.
\frac{\frac{1}{12}\sqrt{2-\frac{7}{4}}}{\left(-\frac{5}{3}\right)^{-1}+\frac{1}{2}-\left(-2\right)^{-2}}
Tangohia te \frac{5}{12} i te \frac{1}{2}, ka \frac{1}{12}.
\frac{\frac{1}{12}\sqrt{\frac{1}{4}}}{\left(-\frac{5}{3}\right)^{-1}+\frac{1}{2}-\left(-2\right)^{-2}}
Tangohia te \frac{7}{4} i te 2, ka \frac{1}{4}.
\frac{\frac{1}{12}\times \frac{1}{2}}{\left(-\frac{5}{3}\right)^{-1}+\frac{1}{2}-\left(-2\right)^{-2}}
Tuhia anō te pūtake rua o te whakawehenga \frac{1}{4} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{4}}. Tuhia te pūtakerua o te taurunga me te tauraro.
\frac{\frac{1}{24}}{\left(-\frac{5}{3}\right)^{-1}+\frac{1}{2}-\left(-2\right)^{-2}}
Whakareatia te \frac{1}{12} ki te \frac{1}{2}, ka \frac{1}{24}.
\frac{\frac{1}{24}}{-\frac{3}{5}+\frac{1}{2}-\left(-2\right)^{-2}}
Tātaihia te -\frac{5}{3} mā te pū o -1, kia riro ko -\frac{3}{5}.
\frac{\frac{1}{24}}{-\frac{1}{10}-\left(-2\right)^{-2}}
Tāpirihia te -\frac{3}{5} ki te \frac{1}{2}, ka -\frac{1}{10}.
\frac{\frac{1}{24}}{-\frac{1}{10}-\frac{1}{4}}
Tātaihia te -2 mā te pū o -2, kia riro ko \frac{1}{4}.
\frac{\frac{1}{24}}{-\frac{7}{20}}
Tangohia te \frac{1}{4} i te -\frac{1}{10}, ka -\frac{7}{20}.
\frac{1}{24}\left(-\frac{20}{7}\right)
Whakawehe \frac{1}{24} ki te -\frac{7}{20} mā te whakarea \frac{1}{24} ki te tau huripoki o -\frac{7}{20}.
-\frac{5}{42}
Whakareatia te \frac{1}{24} ki te -\frac{20}{7}, ka -\frac{5}{42}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}