Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(125^{-2}\times 8^{-3}\right)^{-1}\times \left(64\times 25\right)^{2}}{\left(25^{3}\times 16\right)^{-2}\left(5^{-3}\times 3^{2}-1\right)^{-1}}
Whakawehe \frac{\left(125^{-2}\times 8^{-3}\right)^{-1}}{\left(25^{3}\times 16\right)^{-2}} ki te \frac{\left(5^{-3}\times 3^{2}-1\right)^{-1}}{\left(64\times 25\right)^{2}} mā te whakarea \frac{\left(125^{-2}\times 8^{-3}\right)^{-1}}{\left(25^{3}\times 16\right)^{-2}} ki te tau huripoki o \frac{\left(5^{-3}\times 3^{2}-1\right)^{-1}}{\left(64\times 25\right)^{2}}.
\frac{\left(\frac{1}{15625}\times 8^{-3}\right)^{-1}\times \left(64\times 25\right)^{2}}{\left(25^{3}\times 16\right)^{-2}\left(5^{-3}\times 3^{2}-1\right)^{-1}}
Tātaihia te 125 mā te pū o -2, kia riro ko \frac{1}{15625}.
\frac{\left(\frac{1}{15625}\times \frac{1}{512}\right)^{-1}\times \left(64\times 25\right)^{2}}{\left(25^{3}\times 16\right)^{-2}\left(5^{-3}\times 3^{2}-1\right)^{-1}}
Tātaihia te 8 mā te pū o -3, kia riro ko \frac{1}{512}.
\frac{\left(\frac{1}{8000000}\right)^{-1}\times \left(64\times 25\right)^{2}}{\left(25^{3}\times 16\right)^{-2}\left(5^{-3}\times 3^{2}-1\right)^{-1}}
Whakareatia te \frac{1}{15625} ki te \frac{1}{512}, ka \frac{1}{8000000}.
\frac{8000000\times \left(64\times 25\right)^{2}}{\left(25^{3}\times 16\right)^{-2}\left(5^{-3}\times 3^{2}-1\right)^{-1}}
Tātaihia te \frac{1}{8000000} mā te pū o -1, kia riro ko 8000000.
\frac{8000000\times 1600^{2}}{\left(25^{3}\times 16\right)^{-2}\left(5^{-3}\times 3^{2}-1\right)^{-1}}
Whakareatia te 64 ki te 25, ka 1600.
\frac{8000000\times 2560000}{\left(25^{3}\times 16\right)^{-2}\left(5^{-3}\times 3^{2}-1\right)^{-1}}
Tātaihia te 1600 mā te pū o 2, kia riro ko 2560000.
\frac{20480000000000}{\left(25^{3}\times 16\right)^{-2}\left(5^{-3}\times 3^{2}-1\right)^{-1}}
Whakareatia te 8000000 ki te 2560000, ka 20480000000000.
\frac{20480000000000}{\left(15625\times 16\right)^{-2}\left(5^{-3}\times 3^{2}-1\right)^{-1}}
Tātaihia te 25 mā te pū o 3, kia riro ko 15625.
\frac{20480000000000}{250000^{-2}\left(5^{-3}\times 3^{2}-1\right)^{-1}}
Whakareatia te 15625 ki te 16, ka 250000.
\frac{20480000000000}{\frac{1}{62500000000}\left(5^{-3}\times 3^{2}-1\right)^{-1}}
Tātaihia te 250000 mā te pū o -2, kia riro ko \frac{1}{62500000000}.
\frac{20480000000000}{\frac{1}{62500000000}\left(\frac{1}{125}\times 3^{2}-1\right)^{-1}}
Tātaihia te 5 mā te pū o -3, kia riro ko \frac{1}{125}.
\frac{20480000000000}{\frac{1}{62500000000}\left(\frac{1}{125}\times 9-1\right)^{-1}}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
\frac{20480000000000}{\frac{1}{62500000000}\left(\frac{9}{125}-1\right)^{-1}}
Whakareatia te \frac{1}{125} ki te 9, ka \frac{9}{125}.
\frac{20480000000000}{\frac{1}{62500000000}\left(-\frac{116}{125}\right)^{-1}}
Tangohia te 1 i te \frac{9}{125}, ka -\frac{116}{125}.
\frac{20480000000000}{\frac{1}{62500000000}\left(-\frac{125}{116}\right)}
Tātaihia te -\frac{116}{125} mā te pū o -1, kia riro ko -\frac{125}{116}.
\frac{20480000000000}{-\frac{1}{58000000000}}
Whakareatia te \frac{1}{62500000000} ki te -\frac{125}{116}, ka -\frac{1}{58000000000}.
20480000000000\left(-58000000000\right)
Whakawehe 20480000000000 ki te -\frac{1}{58000000000} mā te whakarea 20480000000000 ki te tau huripoki o -\frac{1}{58000000000}.
-1187840000000000000000000
Whakareatia te 20480000000000 ki te -58000000000, ka -1187840000000000000000000.