Aromātai
-\frac{18}{25}=-0.72
Tauwehe
-\frac{18}{25} = -0.72
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{2\times 4}{5\times 3}-\left(\frac{1}{3}+2\right)}{1+3\times \frac{1}{2}}
Me whakarea te \frac{2}{5} ki te \frac{4}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\frac{8}{15}-\left(\frac{1}{3}+2\right)}{1+3\times \frac{1}{2}}
Mahia ngā whakarea i roto i te hautanga \frac{2\times 4}{5\times 3}.
\frac{\frac{8}{15}-\left(\frac{1}{3}+\frac{6}{3}\right)}{1+3\times \frac{1}{2}}
Me tahuri te 2 ki te hautau \frac{6}{3}.
\frac{\frac{8}{15}-\frac{1+6}{3}}{1+3\times \frac{1}{2}}
Tā te mea he rite te tauraro o \frac{1}{3} me \frac{6}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{8}{15}-\frac{7}{3}}{1+3\times \frac{1}{2}}
Tāpirihia te 1 ki te 6, ka 7.
\frac{\frac{8}{15}-\frac{35}{15}}{1+3\times \frac{1}{2}}
Ko te maha noa iti rawa atu o 15 me 3 ko 15. Me tahuri \frac{8}{15} me \frac{7}{3} ki te hautau me te tautūnga 15.
\frac{\frac{8-35}{15}}{1+3\times \frac{1}{2}}
Tā te mea he rite te tauraro o \frac{8}{15} me \frac{35}{15}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{-27}{15}}{1+3\times \frac{1}{2}}
Tangohia te 35 i te 8, ka -27.
\frac{-\frac{9}{5}}{1+3\times \frac{1}{2}}
Whakahekea te hautanga \frac{-27}{15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{-\frac{9}{5}}{1+\frac{3}{2}}
Whakareatia te 3 ki te \frac{1}{2}, ka \frac{3}{2}.
\frac{-\frac{9}{5}}{\frac{2}{2}+\frac{3}{2}}
Me tahuri te 1 ki te hautau \frac{2}{2}.
\frac{-\frac{9}{5}}{\frac{2+3}{2}}
Tā te mea he rite te tauraro o \frac{2}{2} me \frac{3}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-\frac{9}{5}}{\frac{5}{2}}
Tāpirihia te 2 ki te 3, ka 5.
-\frac{9}{5}\times \frac{2}{5}
Whakawehe -\frac{9}{5} ki te \frac{5}{2} mā te whakarea -\frac{9}{5} ki te tau huripoki o \frac{5}{2}.
\frac{-9\times 2}{5\times 5}
Me whakarea te -\frac{9}{5} ki te \frac{2}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-18}{25}
Mahia ngā whakarea i roto i te hautanga \frac{-9\times 2}{5\times 5}.
-\frac{18}{25}
Ka taea te hautanga \frac{-18}{25} te tuhi anō ko -\frac{18}{25} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}