Whakaoti mō a (complex solution)
\left\{\begin{matrix}a=-\frac{bx+c-\eta }{x^{2}}\text{, }&x\neq 0\\a\in \mathrm{C}\text{, }&\eta =c\text{ and }x=0\end{matrix}\right.
Whakaoti mō b (complex solution)
\left\{\begin{matrix}b=-\frac{ax^{2}+c-\eta }{x}\text{, }&x\neq 0\\b\in \mathrm{C}\text{, }&\eta =c\text{ and }x=0\end{matrix}\right.
Whakaoti mō a
\left\{\begin{matrix}a=-\frac{bx+c-\eta }{x^{2}}\text{, }&x\neq 0\\a\in \mathrm{R}\text{, }&\eta =c\text{ and }x=0\end{matrix}\right.
Whakaoti mō b
\left\{\begin{matrix}b=-\frac{ax^{2}+c-\eta }{x}\text{, }&x\neq 0\\b\in \mathrm{R}\text{, }&\eta =c\text{ and }x=0\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
ax^{2}+bx+c=\eta
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
ax^{2}+c=\eta -bx
Tangohia te bx mai i ngā taha e rua.
ax^{2}=\eta -bx-c
Tangohia te c mai i ngā taha e rua.
x^{2}a=-bx+\eta -c
He hanga arowhānui tō te whārite.
\frac{x^{2}a}{x^{2}}=\frac{-bx+\eta -c}{x^{2}}
Whakawehea ngā taha e rua ki te x^{2}.
a=\frac{-bx+\eta -c}{x^{2}}
Mā te whakawehe ki te x^{2} ka wetekia te whakareanga ki te x^{2}.
ax^{2}+bx+c=\eta
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
bx+c=\eta -ax^{2}
Tangohia te ax^{2} mai i ngā taha e rua.
bx=\eta -ax^{2}-c
Tangohia te c mai i ngā taha e rua.
bx=-ax^{2}+\eta -c
Whakaraupapatia anō ngā kīanga tau.
xb=-ax^{2}+\eta -c
He hanga arowhānui tō te whārite.
\frac{xb}{x}=\frac{-ax^{2}+\eta -c}{x}
Whakawehea ngā taha e rua ki te x.
b=\frac{-ax^{2}+\eta -c}{x}
Mā te whakawehe ki te x ka wetekia te whakareanga ki te x.
ax^{2}+bx+c=\eta
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
ax^{2}+c=\eta -bx
Tangohia te bx mai i ngā taha e rua.
ax^{2}=\eta -bx-c
Tangohia te c mai i ngā taha e rua.
x^{2}a=-bx+\eta -c
He hanga arowhānui tō te whārite.
\frac{x^{2}a}{x^{2}}=\frac{-bx+\eta -c}{x^{2}}
Whakawehea ngā taha e rua ki te x^{2}.
a=\frac{-bx+\eta -c}{x^{2}}
Mā te whakawehe ki te x^{2} ka wetekia te whakareanga ki te x^{2}.
ax^{2}+bx+c=\eta
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
bx+c=\eta -ax^{2}
Tangohia te ax^{2} mai i ngā taha e rua.
bx=\eta -ax^{2}-c
Tangohia te c mai i ngā taha e rua.
bx=-ax^{2}+\eta -c
Whakaraupapatia anō ngā kīanga tau.
xb=-ax^{2}+\eta -c
He hanga arowhānui tō te whārite.
\frac{xb}{x}=\frac{-ax^{2}+\eta -c}{x}
Whakawehea ngā taha e rua ki te x.
b=\frac{-ax^{2}+\eta -c}{x}
Mā te whakawehe ki te x ka wetekia te whakareanga ki te x.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}