Whakaoti mō x
x = \frac{125000000 \sqrt{822474820842914}}{411237410421457} = 8\frac{294953443822382}{411237410421457} \approx 8.717233978
x = -\frac{125000000 \sqrt{822474820842914}}{411237410421457} = -8\frac{294953443822382}{411237410421457} \approx -8.717233978
Graph
Pātaitai
Trigonometry
\cos 70 ^ { \circ } = \frac { x ^ { 2 } + x ^ { 2 } - 10 ^ { 2 } } { 2 ( x ) ( x ) }
Tohaina
Kua tāruatia ki te papatopenga
0.3420201433256688 = \frac{x ^ {2} + x ^ {2} - 10 ^ {2}}{2 {(x)} {(x)}}
Evaluate trigonometric functions in the problem
0.6840402866513376x^{2}=x^{2}+x^{2}-10^{2}
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 2x^{2}.
0.6840402866513376x^{2}=2x^{2}-10^{2}
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
0.6840402866513376x^{2}=2x^{2}-100
Tātaihia te 10 mā te pū o 2, kia riro ko 100.
0.6840402866513376x^{2}-2x^{2}=-100
Tangohia te 2x^{2} mai i ngā taha e rua.
-1.3159597133486624x^{2}=-100
Pahekotia te 0.6840402866513376x^{2} me -2x^{2}, ka -1.3159597133486624x^{2}.
x^{2}=\frac{-100}{-1.3159597133486624}
Whakawehea ngā taha e rua ki te -1.3159597133486624.
x^{2}=\frac{-1000000000000000000}{-13159597133486624}
Whakarohaina te \frac{-100}{-1.3159597133486624} mā te whakarea i te taurunga me te tauraro ki te 10000000000000000.
x^{2}=\frac{31250000000000000}{411237410421457}
Whakahekea te hautanga \frac{-1000000000000000000}{-13159597133486624} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -32.
x=\frac{125000000\sqrt{822474820842914}}{411237410421457} x=-\frac{125000000\sqrt{822474820842914}}{411237410421457}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
0.3420201433256688 = \frac{x ^ {2} + x ^ {2} - 10 ^ {2}}{2 {(x)} {(x)}}
Evaluate trigonometric functions in the problem
0.6840402866513376x^{2}=x^{2}+x^{2}-10^{2}
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 2x^{2}.
0.6840402866513376x^{2}=2x^{2}-10^{2}
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
0.6840402866513376x^{2}=2x^{2}-100
Tātaihia te 10 mā te pū o 2, kia riro ko 100.
0.6840402866513376x^{2}-2x^{2}=-100
Tangohia te 2x^{2} mai i ngā taha e rua.
-1.3159597133486624x^{2}=-100
Pahekotia te 0.6840402866513376x^{2} me -2x^{2}, ka -1.3159597133486624x^{2}.
-1.3159597133486624x^{2}+100=0
Me tāpiri te 100 ki ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\left(-1.3159597133486624\right)\times 100}}{2\left(-1.3159597133486624\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1.3159597133486624 mō a, 0 mō b, me 100 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-1.3159597133486624\right)\times 100}}{2\left(-1.3159597133486624\right)}
Pūrua 0.
x=\frac{0±\sqrt{5.2638388533946496\times 100}}{2\left(-1.3159597133486624\right)}
Whakareatia -4 ki te -1.3159597133486624.
x=\frac{0±\sqrt{526.38388533946496}}{2\left(-1.3159597133486624\right)}
Whakareatia 5.2638388533946496 ki te 100.
x=\frac{0±\frac{\sqrt{822474820842914}}{1250000}}{2\left(-1.3159597133486624\right)}
Tuhia te pūtakerua o te 526.38388533946496.
x=\frac{0±\frac{\sqrt{822474820842914}}{1250000}}{-2.6319194266973248}
Whakareatia 2 ki te -1.3159597133486624.
x=-\frac{125000000\sqrt{822474820842914}}{411237410421457}
Nā, me whakaoti te whārite x=\frac{0±\frac{\sqrt{822474820842914}}{1250000}}{-2.6319194266973248} ina he tāpiri te ±.
x=\frac{125000000\sqrt{822474820842914}}{411237410421457}
Nā, me whakaoti te whārite x=\frac{0±\frac{\sqrt{822474820842914}}{1250000}}{-2.6319194266973248} ina he tango te ±.
x=-\frac{125000000\sqrt{822474820842914}}{411237410421457} x=\frac{125000000\sqrt{822474820842914}}{411237410421457}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}