Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Tohaina

0.3420201433256688 = \frac{x ^ {2} + x ^ {2} - 10 ^ {2}}{2 {(x)} {(x)}}
Evaluate trigonometric functions in the problem
0.6840402866513376x^{2}=x^{2}+x^{2}-10^{2}
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 2x^{2}.
0.6840402866513376x^{2}=2x^{2}-10^{2}
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
0.6840402866513376x^{2}=2x^{2}-100
Tātaihia te 10 mā te pū o 2, kia riro ko 100.
0.6840402866513376x^{2}-2x^{2}=-100
Tangohia te 2x^{2} mai i ngā taha e rua.
-1.3159597133486624x^{2}=-100
Pahekotia te 0.6840402866513376x^{2} me -2x^{2}, ka -1.3159597133486624x^{2}.
x^{2}=\frac{-100}{-1.3159597133486624}
Whakawehea ngā taha e rua ki te -1.3159597133486624.
x^{2}=\frac{-1000000000000000000}{-13159597133486624}
Whakarohaina te \frac{-100}{-1.3159597133486624} mā te whakarea i te taurunga me te tauraro ki te 10000000000000000.
x^{2}=\frac{31250000000000000}{411237410421457}
Whakahekea te hautanga \frac{-1000000000000000000}{-13159597133486624} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -32.
x=\frac{125000000\sqrt{822474820842914}}{411237410421457} x=-\frac{125000000\sqrt{822474820842914}}{411237410421457}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
0.3420201433256688 = \frac{x ^ {2} + x ^ {2} - 10 ^ {2}}{2 {(x)} {(x)}}
Evaluate trigonometric functions in the problem
0.6840402866513376x^{2}=x^{2}+x^{2}-10^{2}
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 2x^{2}.
0.6840402866513376x^{2}=2x^{2}-10^{2}
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
0.6840402866513376x^{2}=2x^{2}-100
Tātaihia te 10 mā te pū o 2, kia riro ko 100.
0.6840402866513376x^{2}-2x^{2}=-100
Tangohia te 2x^{2} mai i ngā taha e rua.
-1.3159597133486624x^{2}=-100
Pahekotia te 0.6840402866513376x^{2} me -2x^{2}, ka -1.3159597133486624x^{2}.
-1.3159597133486624x^{2}+100=0
Me tāpiri te 100 ki ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\left(-1.3159597133486624\right)\times 100}}{2\left(-1.3159597133486624\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1.3159597133486624 mō a, 0 mō b, me 100 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-1.3159597133486624\right)\times 100}}{2\left(-1.3159597133486624\right)}
Pūrua 0.
x=\frac{0±\sqrt{5.2638388533946496\times 100}}{2\left(-1.3159597133486624\right)}
Whakareatia -4 ki te -1.3159597133486624.
x=\frac{0±\sqrt{526.38388533946496}}{2\left(-1.3159597133486624\right)}
Whakareatia 5.2638388533946496 ki te 100.
x=\frac{0±\frac{\sqrt{822474820842914}}{1250000}}{2\left(-1.3159597133486624\right)}
Tuhia te pūtakerua o te 526.38388533946496.
x=\frac{0±\frac{\sqrt{822474820842914}}{1250000}}{-2.6319194266973248}
Whakareatia 2 ki te -1.3159597133486624.
x=-\frac{125000000\sqrt{822474820842914}}{411237410421457}
Nā, me whakaoti te whārite x=\frac{0±\frac{\sqrt{822474820842914}}{1250000}}{-2.6319194266973248} ina he tāpiri te ±.
x=\frac{125000000\sqrt{822474820842914}}{411237410421457}
Nā, me whakaoti te whārite x=\frac{0±\frac{\sqrt{822474820842914}}{1250000}}{-2.6319194266973248} ina he tango te ±.
x=-\frac{125000000\sqrt{822474820842914}}{411237410421457} x=\frac{125000000\sqrt{822474820842914}}{411237410421457}
Kua oti te whārite te whakatau.