Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\cos(180+60)=\cos(180)\cos(60)-\sin(60)\sin(180)
Whakamahia \cos(x+y)=\cos(x)\cos(y)-\sin(y)\sin(x) ina x=180 me te y=60 kia whiwhi i te hua.
-\cos(60)-\sin(60)\sin(180)
Tīkina te uara \cos(180) mai i te ripanga uara pākoki.
-\frac{1}{2}-\sin(60)\sin(180)
Tīkina te uara \cos(60) mai i te ripanga uara pākoki.
-\frac{1}{2}-\frac{\sqrt{3}}{2}\sin(180)
Tīkina te uara \sin(60) mai i te ripanga uara pākoki.
-\frac{1}{2}-\frac{\sqrt{3}}{2}\times 0
Tīkina te uara \sin(180) mai i te ripanga uara pākoki.
-\frac{1}{2}
Mahia ngā tātaitai.