Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\cos(180+45)=\cos(180)\cos(45)-\sin(45)\sin(180)
Whakamahia \cos(x+y)=\cos(x)\cos(y)-\sin(y)\sin(x) ina x=180 me te y=45 kia whiwhi i te hua.
-\cos(45)-\sin(45)\sin(180)
Tīkina te uara \cos(180) mai i te ripanga uara pākoki.
-\frac{\sqrt{2}}{2}-\sin(45)\sin(180)
Tīkina te uara \cos(45) mai i te ripanga uara pākoki.
-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}\sin(180)
Tīkina te uara \sin(45) mai i te ripanga uara pākoki.
-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}\times 0
Tīkina te uara \sin(180) mai i te ripanga uara pākoki.
-\frac{\sqrt{2}}{2}
Mahia ngā tātaitai.