Manatoko
pono
Tohaina
Kua tāruatia ki te papatopenga
\cos(60)=\frac{1-\left(\tan(30)\right)^{2}}{1+\left(\tan(30)\right)^{2}}
Whakareatia te 2 ki te 30, ka 60.
\frac{1}{2}=\frac{1-\left(\tan(30)\right)^{2}}{1+\left(\tan(30)\right)^{2}}
Tīkina te uara \cos(60) mai i te ripanga uara pākoki.
\frac{1}{2}=\frac{1-\left(\frac{\sqrt{3}}{3}\right)^{2}}{1+\left(\tan(30)\right)^{2}}
Tīkina te uara \tan(30) mai i te ripanga uara pākoki.
\frac{1}{2}=\frac{1-\frac{\left(\sqrt{3}\right)^{2}}{3^{2}}}{1+\left(\tan(30)\right)^{2}}
Kia whakarewa i te \frac{\sqrt{3}}{3} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{1}{2}=\frac{1-\frac{3}{3^{2}}}{1+\left(\tan(30)\right)^{2}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{1}{2}=\frac{1-\frac{3}{9}}{1+\left(\tan(30)\right)^{2}}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
\frac{1}{2}=\frac{1-\frac{1}{3}}{1+\left(\tan(30)\right)^{2}}
Whakahekea te hautanga \frac{3}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{1}{2}=\frac{\frac{2}{3}}{1+\left(\tan(30)\right)^{2}}
Tangohia te \frac{1}{3} i te 1, ka \frac{2}{3}.
\frac{1}{2}=\frac{\frac{2}{3}}{1+\left(\frac{\sqrt{3}}{3}\right)^{2}}
Tīkina te uara \tan(30) mai i te ripanga uara pākoki.
\frac{1}{2}=\frac{\frac{2}{3}}{1+\frac{\left(\sqrt{3}\right)^{2}}{3^{2}}}
Kia whakarewa i te \frac{\sqrt{3}}{3} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{1}{2}=\frac{\frac{2}{3}}{\frac{3^{2}}{3^{2}}+\frac{\left(\sqrt{3}\right)^{2}}{3^{2}}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{3^{2}}{3^{2}}.
\frac{1}{2}=\frac{\frac{2}{3}}{\frac{3^{2}+\left(\sqrt{3}\right)^{2}}{3^{2}}}
Tā te mea he rite te tauraro o \frac{3^{2}}{3^{2}} me \frac{\left(\sqrt{3}\right)^{2}}{3^{2}}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1}{2}=\frac{2\times 3^{2}}{3\left(3^{2}+\left(\sqrt{3}\right)^{2}\right)}
Whakawehe \frac{2}{3} ki te \frac{3^{2}+\left(\sqrt{3}\right)^{2}}{3^{2}} mā te whakarea \frac{2}{3} ki te tau huripoki o \frac{3^{2}+\left(\sqrt{3}\right)^{2}}{3^{2}}.
\frac{1}{2}=\frac{2\times 3}{\left(\sqrt{3}\right)^{2}+3^{2}}
Me whakakore tahi te 3 i te taurunga me te tauraro.
\frac{1}{2}=\frac{6}{\left(\sqrt{3}\right)^{2}+3^{2}}
Whakareatia te 2 ki te 3, ka 6.
\frac{1}{2}=\frac{6}{3+3^{2}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{1}{2}=\frac{6}{3+9}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
\frac{1}{2}=\frac{6}{12}
Tāpirihia te 3 ki te 9, ka 12.
\frac{1}{2}=\frac{1}{2}
Whakahekea te hautanga \frac{6}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
\text{true}
Whakatauritea te \frac{1}{2} me te \frac{1}{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}