Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\cos(90+45)=\cos(90)\cos(45)-\sin(45)\sin(90)
Whakamahia \cos(x+y)=\cos(x)\cos(y)-\sin(y)\sin(x) ina x=90 me te y=45 kia whiwhi i te hua.
0\cos(45)-\sin(45)\sin(90)
Tīkina te uara \cos(90) mai i te ripanga uara pākoki.
0\times \frac{\sqrt{2}}{2}-\sin(45)\sin(90)
Tīkina te uara \cos(45) mai i te ripanga uara pākoki.
0\times \frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}\sin(90)
Tīkina te uara \sin(45) mai i te ripanga uara pākoki.
0\times \frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}\times 1
Tīkina te uara \sin(90) mai i te ripanga uara pākoki.
-\frac{\sqrt{2}}{2}
Mahia ngā tātaitai.