Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\cos(\frac{3\pi }{2}+\frac{\pi }{4})=\cos(\frac{3\pi }{2})\cos(\frac{\pi }{4})-\sin(\frac{\pi }{4})\sin(\frac{3\pi }{2})
Whakamahia \cos(x+y)=\cos(x)\cos(y)-\sin(y)\sin(x) ina x=\frac{3\pi }{2} me te y=\frac{\pi }{4} kia whiwhi i te hua.
0\cos(\frac{\pi }{4})-\sin(\frac{\pi }{4})\sin(\frac{3\pi }{2})
Tīkina te uara \cos(\frac{3\pi }{2}) mai i te ripanga uara pākoki.
0\times \frac{\sqrt{2}}{2}-\sin(\frac{\pi }{4})\sin(\frac{3\pi }{2})
Tīkina te uara \cos(\frac{\pi }{4}) mai i te ripanga uara pākoki.
0\times \frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}\sin(\frac{3\pi }{2})
Tīkina te uara \sin(\frac{\pi }{4}) mai i te ripanga uara pākoki.
0\times \frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}\left(-1\right)
Tīkina te uara \sin(\frac{3\pi }{2}) mai i te ripanga uara pākoki.
\frac{\sqrt{2}}{2}
Mahia ngā tātaitai.