Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\cos(\frac{\pi }{2}+\frac{\pi }{3})=\cos(\frac{\pi }{2})\cos(\frac{\pi }{3})-\sin(\frac{\pi }{3})\sin(\frac{\pi }{2})
Whakamahia \cos(x+y)=\cos(x)\cos(y)-\sin(y)\sin(x) ina x=\frac{\pi }{2} me te y=\frac{\pi }{3} kia whiwhi i te hua.
0\cos(\frac{\pi }{3})-\sin(\frac{\pi }{3})\sin(\frac{\pi }{2})
Tīkina te uara \cos(\frac{\pi }{2}) mai i te ripanga uara pākoki.
0\times \frac{1}{2}-\sin(\frac{\pi }{3})\sin(\frac{\pi }{2})
Tīkina te uara \cos(\frac{\pi }{3}) mai i te ripanga uara pākoki.
0\times \frac{1}{2}-\frac{\sqrt{3}}{2}\sin(\frac{\pi }{2})
Tīkina te uara \sin(\frac{\pi }{3}) mai i te ripanga uara pākoki.
0\times \frac{1}{2}-\frac{\sqrt{3}}{2}\times 1
Tīkina te uara \sin(\frac{\pi }{2}) mai i te ripanga uara pākoki.
-\frac{\sqrt{3}}{2}
Mahia ngā tātaitai.