Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\cos(\pi +\frac{\pi }{6})=\cos(\pi )\cos(\frac{\pi }{6})-\sin(\frac{\pi }{6})\sin(\pi )
Whakamahia \cos(x+y)=\cos(x)\cos(y)-\sin(y)\sin(x) ina x=\pi me te y=\frac{\pi }{6} kia whiwhi i te hua.
-\cos(\frac{\pi }{6})-\sin(\frac{\pi }{6})\sin(\pi )
Tīkina te uara \cos(\pi ) mai i te ripanga uara pākoki.
-\frac{\sqrt{3}}{2}-\sin(\frac{\pi }{6})\sin(\pi )
Tīkina te uara \cos(\frac{\pi }{6}) mai i te ripanga uara pākoki.
-\frac{\sqrt{3}}{2}-\frac{1}{2}\sin(\pi )
Tīkina te uara \sin(\frac{\pi }{6}) mai i te ripanga uara pākoki.
-\frac{\sqrt{3}}{2}-\frac{1}{2}\times 0
Tīkina te uara \sin(\pi ) mai i te ripanga uara pākoki.
-\frac{\sqrt{3}}{2}
Mahia ngā tātaitai.