Aromātai
\frac{1}{2}=0.5
Tauwehe
\frac{1}{2} = 0.5
Pātaitai
Trigonometry
\cos ( \frac{ \pi }{ 2 } ) + { \left( \cos ( \frac{ \pi }{ 4 } ) \right) }^{ 2 }
Tohaina
Kua tāruatia ki te papatopenga
0+\left(\cos(\frac{\pi }{4})\right)^{2}
Tīkina te uara \cos(\frac{\pi }{2}) mai i te ripanga uara pākoki.
0+\left(\frac{\sqrt{2}}{2}\right)^{2}
Tīkina te uara \cos(\frac{\pi }{4}) mai i te ripanga uara pākoki.
0+\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}
Kia whakarewa i te \frac{\sqrt{2}}{2} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}
Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{2}{2^{2}}
Ko te pūrua o \sqrt{2} ko 2.
\frac{2}{4}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{1}{2}
Whakahekea te hautanga \frac{2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}