Whakaoti mō β
\beta =-\frac{8\alpha \left(\alpha -0.8\right)}{25}
Whakaoti mō α
\alpha =\frac{\sqrt{-\frac{25\beta }{2}+0.64}}{2}+0.4
\alpha =-\frac{\sqrt{-\frac{25\beta }{2}+0.64}}{2}+0.4\text{, }\beta \leq 0.0512
Tohaina
Kua tāruatia ki te papatopenga
-0.8\alpha +3.125\beta =-\alpha ^{2}
Tangohia te \alpha ^{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
3.125\beta =-\alpha ^{2}+0.8\alpha
Me tāpiri te 0.8\alpha ki ngā taha e rua.
3.125\beta =-\alpha ^{2}+\frac{4\alpha }{5}
He hanga arowhānui tō te whārite.
\frac{3.125\beta }{3.125}=\frac{\alpha \left(0.8-\alpha \right)}{3.125}
Whakawehea ngā taha e rua o te whārite ki te 3.125, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
\beta =\frac{\alpha \left(0.8-\alpha \right)}{3.125}
Mā te whakawehe ki te 3.125 ka wetekia te whakareanga ki te 3.125.
\beta =\frac{8\alpha \left(0.8-\alpha \right)}{25}
Whakawehe \alpha \left(0.8-\alpha \right) ki te 3.125 mā te whakarea \alpha \left(0.8-\alpha \right) ki te tau huripoki o 3.125.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}