Tīpoka ki ngā ihirangi matua
Whakaoti mō a_2
Tick mark Image
Whakaoti mō c
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a_{2}c\tan(-\alpha _{3})=\alpha
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
c\tan(-\alpha _{3})a_{2}=\alpha
He hanga arowhānui tō te whārite.
\frac{c\tan(-\alpha _{3})a_{2}}{c\tan(-\alpha _{3})}=\frac{\alpha }{c\tan(-\alpha _{3})}
Whakawehea ngā taha e rua ki te c\tan(-\alpha _{3}).
a_{2}=\frac{\alpha }{c\tan(-\alpha _{3})}
Mā te whakawehe ki te c\tan(-\alpha _{3}) ka wetekia te whakareanga ki te c\tan(-\alpha _{3}).
a_{2}=-\frac{\alpha \cot(\alpha _{3})}{c}
Whakawehe \alpha ki te c\tan(-\alpha _{3}).
a_{2}c\tan(-\alpha _{3})=\alpha
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
a_{2}\tan(-\alpha _{3})c=\alpha
He hanga arowhānui tō te whārite.
\frac{a_{2}\tan(-\alpha _{3})c}{a_{2}\tan(-\alpha _{3})}=\frac{\alpha }{a_{2}\tan(-\alpha _{3})}
Whakawehea ngā taha e rua ki te a_{2}\tan(-\alpha _{3}).
c=\frac{\alpha }{a_{2}\tan(-\alpha _{3})}
Mā te whakawehe ki te a_{2}\tan(-\alpha _{3}) ka wetekia te whakareanga ki te a_{2}\tan(-\alpha _{3}).
c=-\frac{\alpha \cot(\alpha _{3})}{a_{2}}
Whakawehe \alpha ki te a_{2}\tan(-\alpha _{3}).