Whakaoti mō Δ
\Delta =\frac{40}{3}\approx 13.333333333
Tautapa Δ
\Delta ≔\frac{40}{3}
Tohaina
Kua tāruatia ki te papatopenga
\Delta =16-4\left(4-\frac{10}{3}\right)
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
\Delta =16-4\left(\frac{12}{3}-\frac{10}{3}\right)
Me tahuri te 4 ki te hautau \frac{12}{3}.
\Delta =16-4\times \frac{12-10}{3}
Tā te mea he rite te tauraro o \frac{12}{3} me \frac{10}{3}, me tango rāua mā te tango i ō raua taurunga.
\Delta =16-4\times \frac{2}{3}
Tangohia te 10 i te 12, ka 2.
\Delta =16-\frac{4\times 2}{3}
Tuhia te 4\times \frac{2}{3} hei hautanga kotahi.
\Delta =16-\frac{8}{3}
Whakareatia te 4 ki te 2, ka 8.
\Delta =\frac{48}{3}-\frac{8}{3}
Me tahuri te 16 ki te hautau \frac{48}{3}.
\Delta =\frac{48-8}{3}
Tā te mea he rite te tauraro o \frac{48}{3} me \frac{8}{3}, me tango rāua mā te tango i ō raua taurunga.
\Delta =\frac{40}{3}
Tangohia te 8 i te 48, ka 40.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}