Whakaoti mō Δ
\Delta =\frac{208}{3}\approx 69.333333333
Tautapa Δ
\Delta ≔\frac{208}{3}
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\Delta = 4 ^ { 2 } - 4 ( 4 ( - \frac { 10 } { 3 } ) )
Tohaina
Kua tāruatia ki te papatopenga
\Delta =16-4\times 4\left(-\frac{10}{3}\right)
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
\Delta =16-16\left(-\frac{10}{3}\right)
Whakareatia te 4 ki te 4, ka 16.
\Delta =16-\frac{16\left(-10\right)}{3}
Tuhia te 16\left(-\frac{10}{3}\right) hei hautanga kotahi.
\Delta =16-\frac{-160}{3}
Whakareatia te 16 ki te -10, ka -160.
\Delta =16-\left(-\frac{160}{3}\right)
Ka taea te hautanga \frac{-160}{3} te tuhi anō ko -\frac{160}{3} mā te tango i te tohu tōraro.
\Delta =16+\frac{160}{3}
Ko te tauaro o -\frac{160}{3} ko \frac{160}{3}.
\Delta =\frac{48}{3}+\frac{160}{3}
Me tahuri te 16 ki te hautau \frac{48}{3}.
\Delta =\frac{48+160}{3}
Tā te mea he rite te tauraro o \frac{48}{3} me \frac{160}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\Delta =\frac{208}{3}
Tāpirihia te 48 ki te 160, ka 208.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}