Aromātai
9
Tauwehe
3^{2}
Tohaina
Kua tāruatia ki te papatopenga
\frac{125\times 3^{2}-2^{3}\left(\frac{6^{2}+6^{2}\times 15}{2^{3}}+3^{2}\times 17-6\left(2^{2}\times 14-\frac{12^{2}}{3^{2}}\times 2\right)\right)}{53}
Tātaihia te 5 mā te pū o 3, kia riro ko 125.
\frac{125\times 9-2^{3}\left(\frac{6^{2}+6^{2}\times 15}{2^{3}}+3^{2}\times 17-6\left(2^{2}\times 14-\frac{12^{2}}{3^{2}}\times 2\right)\right)}{53}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
\frac{1125-2^{3}\left(\frac{6^{2}+6^{2}\times 15}{2^{3}}+3^{2}\times 17-6\left(2^{2}\times 14-\frac{12^{2}}{3^{2}}\times 2\right)\right)}{53}
Whakareatia te 125 ki te 9, ka 1125.
\frac{1125-8\left(\frac{6^{2}+6^{2}\times 15}{2^{3}}+3^{2}\times 17-6\left(2^{2}\times 14-\frac{12^{2}}{3^{2}}\times 2\right)\right)}{53}
Tātaihia te 2 mā te pū o 3, kia riro ko 8.
\frac{1125-8\left(\frac{36+6^{2}\times 15}{2^{3}}+3^{2}\times 17-6\left(2^{2}\times 14-\frac{12^{2}}{3^{2}}\times 2\right)\right)}{53}
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
\frac{1125-8\left(\frac{36+36\times 15}{2^{3}}+3^{2}\times 17-6\left(2^{2}\times 14-\frac{12^{2}}{3^{2}}\times 2\right)\right)}{53}
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
\frac{1125-8\left(\frac{36+540}{2^{3}}+3^{2}\times 17-6\left(2^{2}\times 14-\frac{12^{2}}{3^{2}}\times 2\right)\right)}{53}
Whakareatia te 36 ki te 15, ka 540.
\frac{1125-8\left(\frac{576}{2^{3}}+3^{2}\times 17-6\left(2^{2}\times 14-\frac{12^{2}}{3^{2}}\times 2\right)\right)}{53}
Tāpirihia te 36 ki te 540, ka 576.
\frac{1125-8\left(\frac{576}{8}+3^{2}\times 17-6\left(2^{2}\times 14-\frac{12^{2}}{3^{2}}\times 2\right)\right)}{53}
Tātaihia te 2 mā te pū o 3, kia riro ko 8.
\frac{1125-8\left(72+3^{2}\times 17-6\left(2^{2}\times 14-\frac{12^{2}}{3^{2}}\times 2\right)\right)}{53}
Whakawehea te 576 ki te 8, kia riro ko 72.
\frac{1125-8\left(72+9\times 17-6\left(2^{2}\times 14-\frac{12^{2}}{3^{2}}\times 2\right)\right)}{53}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
\frac{1125-8\left(72+153-6\left(2^{2}\times 14-\frac{12^{2}}{3^{2}}\times 2\right)\right)}{53}
Whakareatia te 9 ki te 17, ka 153.
\frac{1125-8\left(225-6\left(2^{2}\times 14-\frac{12^{2}}{3^{2}}\times 2\right)\right)}{53}
Tāpirihia te 72 ki te 153, ka 225.
\frac{1125-8\left(225-6\left(4\times 14-\frac{12^{2}}{3^{2}}\times 2\right)\right)}{53}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{1125-8\left(225-6\left(56-\frac{12^{2}}{3^{2}}\times 2\right)\right)}{53}
Whakareatia te 4 ki te 14, ka 56.
\frac{1125-8\left(225-6\left(56-\frac{144}{3^{2}}\times 2\right)\right)}{53}
Tātaihia te 12 mā te pū o 2, kia riro ko 144.
\frac{1125-8\left(225-6\left(56-\frac{144}{9}\times 2\right)\right)}{53}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
\frac{1125-8\left(225-6\left(56-16\times 2\right)\right)}{53}
Whakawehea te 144 ki te 9, kia riro ko 16.
\frac{1125-8\left(225-6\left(56-32\right)\right)}{53}
Whakareatia te 16 ki te 2, ka 32.
\frac{1125-8\left(225-6\times 24\right)}{53}
Tangohia te 32 i te 56, ka 24.
\frac{1125-8\left(225-144\right)}{53}
Whakareatia te 6 ki te 24, ka 144.
\frac{1125-8\times 81}{53}
Tangohia te 144 i te 225, ka 81.
\frac{1125-648}{53}
Whakareatia te 8 ki te 81, ka 648.
\frac{477}{53}
Tangohia te 648 i te 1125, ka 477.
9
Whakawehea te 477 ki te 53, kia riro ko 9.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}