Aromātai
\frac{5}{2}+2q-3p
Whakaroha
\frac{5}{2}+2q-3p
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
\{ - [ 2 p - 3 q + \frac { 1 } { 2 } ] + [ - p - q + 3 ] \}
Tohaina
Kua tāruatia ki te papatopenga
-2p-\left(-3q\right)-\frac{1}{2}-p-q+3
Hei kimi i te tauaro o 2p-3q+\frac{1}{2}, kimihia te tauaro o ia taurangi.
-2p+3q-\frac{1}{2}-p-q+3
Ko te tauaro o -3q ko 3q.
-2p+2q-\frac{1}{2}-p+3
Pahekotia te 3q me -q, ka 2q.
-2p+2q-\frac{1}{2}-p+\frac{6}{2}
Me tahuri te 3 ki te hautau \frac{6}{2}.
-2p+2q+\frac{-1+6}{2}-p
Tā te mea he rite te tauraro o -\frac{1}{2} me \frac{6}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-2p+2q+\frac{5}{2}-p
Tāpirihia te -1 ki te 6, ka 5.
-3p+2q+\frac{5}{2}
Pahekotia te -2p me -p, ka -3p.
-2p-\left(-3q\right)-\frac{1}{2}-p-q+3
Hei kimi i te tauaro o 2p-3q+\frac{1}{2}, kimihia te tauaro o ia taurangi.
-2p+3q-\frac{1}{2}-p-q+3
Ko te tauaro o -3q ko 3q.
-2p+2q-\frac{1}{2}-p+3
Pahekotia te 3q me -q, ka 2q.
-2p+2q-\frac{1}{2}-p+\frac{6}{2}
Me tahuri te 3 ki te hautau \frac{6}{2}.
-2p+2q+\frac{-1+6}{2}-p
Tā te mea he rite te tauraro o -\frac{1}{2} me \frac{6}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-2p+2q+\frac{5}{2}-p
Tāpirihia te -1 ki te 6, ka 5.
-3p+2q+\frac{5}{2}
Pahekotia te -2p me -p, ka -3p.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}