Aromātai
-3
Tauwehe
-3
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{\left(-21\right)^{2}}{\left(-7\right)^{2}}+\frac{\left(-21\right)^{6}}{\left(-21\right)^{5}}}{\left(-2\right)^{2}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te 2 kia riro ai te 6.
\frac{\frac{\left(-21\right)^{2}}{\left(-7\right)^{2}}+\left(-21\right)^{1}}{\left(-2\right)^{2}}
Hei whakawehe ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga. Me tango te 5 i te 6 kia riro ai te 1.
\frac{\frac{441}{\left(-7\right)^{2}}+\left(-21\right)^{1}}{\left(-2\right)^{2}}
Tātaihia te -21 mā te pū o 2, kia riro ko 441.
\frac{\frac{441}{49}+\left(-21\right)^{1}}{\left(-2\right)^{2}}
Tātaihia te -7 mā te pū o 2, kia riro ko 49.
\frac{9+\left(-21\right)^{1}}{\left(-2\right)^{2}}
Whakawehea te 441 ki te 49, kia riro ko 9.
\frac{9-21}{\left(-2\right)^{2}}
Tātaihia te -21 mā te pū o 1, kia riro ko -21.
\frac{-12}{\left(-2\right)^{2}}
Tangohia te 21 i te 9, ka -12.
\frac{-12}{4}
Tātaihia te -2 mā te pū o 2, kia riro ko 4.
-3
Whakawehea te -12 ki te 4, kia riro ko -3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}