Aromātai
1
Tauwehe
1
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{8}{35}+\frac{105}{70}-\frac{66}{70}+\frac{3}{14}-\frac{2}{35}-\left(2-\frac{12}{7}+\frac{5}{14}\right)\right)\times \frac{3\times 3+1}{3}
Ko te maha noa iti rawa atu o 2 me 35 ko 70. Me tahuri \frac{3}{2} me \frac{33}{35} ki te hautau me te tautūnga 70.
\left(\frac{8}{35}+\frac{105-66}{70}+\frac{3}{14}-\frac{2}{35}-\left(2-\frac{12}{7}+\frac{5}{14}\right)\right)\times \frac{3\times 3+1}{3}
Tā te mea he rite te tauraro o \frac{105}{70} me \frac{66}{70}, me tango rāua mā te tango i ō raua taurunga.
\left(\frac{8}{35}+\frac{39}{70}+\frac{3}{14}-\frac{2}{35}-\left(2-\frac{12}{7}+\frac{5}{14}\right)\right)\times \frac{3\times 3+1}{3}
Tangohia te 66 i te 105, ka 39.
\left(\frac{8}{35}+\frac{39}{70}+\frac{15}{70}-\frac{2}{35}-\left(2-\frac{12}{7}+\frac{5}{14}\right)\right)\times \frac{3\times 3+1}{3}
Ko te maha noa iti rawa atu o 70 me 14 ko 70. Me tahuri \frac{39}{70} me \frac{3}{14} ki te hautau me te tautūnga 70.
\left(\frac{8}{35}+\frac{39+15}{70}-\frac{2}{35}-\left(2-\frac{12}{7}+\frac{5}{14}\right)\right)\times \frac{3\times 3+1}{3}
Tā te mea he rite te tauraro o \frac{39}{70} me \frac{15}{70}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\left(\frac{8}{35}+\frac{54}{70}-\frac{2}{35}-\left(2-\frac{12}{7}+\frac{5}{14}\right)\right)\times \frac{3\times 3+1}{3}
Tāpirihia te 39 ki te 15, ka 54.
\left(\frac{8}{35}+\frac{27}{35}-\frac{2}{35}-\left(2-\frac{12}{7}+\frac{5}{14}\right)\right)\times \frac{3\times 3+1}{3}
Whakahekea te hautanga \frac{54}{70} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\left(\frac{8}{35}+\frac{27-2}{35}-\left(2-\frac{12}{7}+\frac{5}{14}\right)\right)\times \frac{3\times 3+1}{3}
Tā te mea he rite te tauraro o \frac{27}{35} me \frac{2}{35}, me tango rāua mā te tango i ō raua taurunga.
\left(\frac{8}{35}+\frac{25}{35}-\left(2-\frac{12}{7}+\frac{5}{14}\right)\right)\times \frac{3\times 3+1}{3}
Tangohia te 2 i te 27, ka 25.
\left(\frac{8}{35}+\frac{5}{7}-\left(2-\frac{12}{7}+\frac{5}{14}\right)\right)\times \frac{3\times 3+1}{3}
Whakahekea te hautanga \frac{25}{35} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\left(\frac{8}{35}+\frac{5}{7}-\left(\frac{14}{7}-\frac{12}{7}+\frac{5}{14}\right)\right)\times \frac{3\times 3+1}{3}
Me tahuri te 2 ki te hautau \frac{14}{7}.
\left(\frac{8}{35}+\frac{5}{7}-\left(\frac{14-12}{7}+\frac{5}{14}\right)\right)\times \frac{3\times 3+1}{3}
Tā te mea he rite te tauraro o \frac{14}{7} me \frac{12}{7}, me tango rāua mā te tango i ō raua taurunga.
\left(\frac{8}{35}+\frac{5}{7}-\left(\frac{2}{7}+\frac{5}{14}\right)\right)\times \frac{3\times 3+1}{3}
Tangohia te 12 i te 14, ka 2.
\left(\frac{8}{35}+\frac{5}{7}-\left(\frac{4}{14}+\frac{5}{14}\right)\right)\times \frac{3\times 3+1}{3}
Ko te maha noa iti rawa atu o 7 me 14 ko 14. Me tahuri \frac{2}{7} me \frac{5}{14} ki te hautau me te tautūnga 14.
\left(\frac{8}{35}+\frac{5}{7}-\frac{4+5}{14}\right)\times \frac{3\times 3+1}{3}
Tā te mea he rite te tauraro o \frac{4}{14} me \frac{5}{14}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\left(\frac{8}{35}+\frac{5}{7}-\frac{9}{14}\right)\times \frac{3\times 3+1}{3}
Tāpirihia te 4 ki te 5, ka 9.
\left(\frac{8}{35}+\frac{10}{14}-\frac{9}{14}\right)\times \frac{3\times 3+1}{3}
Ko te maha noa iti rawa atu o 7 me 14 ko 14. Me tahuri \frac{5}{7} me \frac{9}{14} ki te hautau me te tautūnga 14.
\left(\frac{8}{35}+\frac{10-9}{14}\right)\times \frac{3\times 3+1}{3}
Tā te mea he rite te tauraro o \frac{10}{14} me \frac{9}{14}, me tango rāua mā te tango i ō raua taurunga.
\left(\frac{8}{35}+\frac{1}{14}\right)\times \frac{3\times 3+1}{3}
Tangohia te 9 i te 10, ka 1.
\left(\frac{16}{70}+\frac{5}{70}\right)\times \frac{3\times 3+1}{3}
Ko te maha noa iti rawa atu o 35 me 14 ko 70. Me tahuri \frac{8}{35} me \frac{1}{14} ki te hautau me te tautūnga 70.
\frac{16+5}{70}\times \frac{3\times 3+1}{3}
Tā te mea he rite te tauraro o \frac{16}{70} me \frac{5}{70}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{21}{70}\times \frac{3\times 3+1}{3}
Tāpirihia te 16 ki te 5, ka 21.
\frac{3}{10}\times \frac{3\times 3+1}{3}
Whakahekea te hautanga \frac{21}{70} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
\frac{3}{10}\times \frac{9+1}{3}
Whakareatia te 3 ki te 3, ka 9.
\frac{3}{10}\times \frac{10}{3}
Tāpirihia te 9 ki te 1, ka 10.
1
Me whakakore atu te \frac{3}{10} me tōna tau utu \frac{10}{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}