Aromātai
\frac{25}{36}\approx 0.694444444
Tauwehe
\frac{5 ^ {2}}{2 ^ {2} \cdot 3 ^ {2}} = 0.6944444444444444
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{5}{2}-\frac{3}{2}\left(\frac{1}{6}\times \frac{3}{5}+\frac{7}{5}\times \frac{1}{7}\right)\times \frac{5}{2}\right)\times \frac{4}{33}+\frac{\left(1-\frac{1}{2}\right)^{2}}{3}+\left(\frac{2}{3}\right)^{2}
Tāpirihia te \frac{3}{2} ki te 1, ka \frac{5}{2}.
\left(\frac{5}{2}-\frac{3}{2}\left(\frac{1}{10}+\frac{7}{5}\times \frac{1}{7}\right)\times \frac{5}{2}\right)\times \frac{4}{33}+\frac{\left(1-\frac{1}{2}\right)^{2}}{3}+\left(\frac{2}{3}\right)^{2}
Whakareatia te \frac{1}{6} ki te \frac{3}{5}, ka \frac{1}{10}.
\left(\frac{5}{2}-\frac{3}{2}\left(\frac{1}{10}+\frac{1}{5}\right)\times \frac{5}{2}\right)\times \frac{4}{33}+\frac{\left(1-\frac{1}{2}\right)^{2}}{3}+\left(\frac{2}{3}\right)^{2}
Whakareatia te \frac{7}{5} ki te \frac{1}{7}, ka \frac{1}{5}.
\left(\frac{5}{2}-\frac{3}{2}\times \frac{3}{10}\times \frac{5}{2}\right)\times \frac{4}{33}+\frac{\left(1-\frac{1}{2}\right)^{2}}{3}+\left(\frac{2}{3}\right)^{2}
Tāpirihia te \frac{1}{10} ki te \frac{1}{5}, ka \frac{3}{10}.
\left(\frac{5}{2}-\frac{9}{20}\times \frac{5}{2}\right)\times \frac{4}{33}+\frac{\left(1-\frac{1}{2}\right)^{2}}{3}+\left(\frac{2}{3}\right)^{2}
Whakareatia te \frac{3}{2} ki te \frac{3}{10}, ka \frac{9}{20}.
\left(\frac{5}{2}-\frac{9}{8}\right)\times \frac{4}{33}+\frac{\left(1-\frac{1}{2}\right)^{2}}{3}+\left(\frac{2}{3}\right)^{2}
Whakareatia te \frac{9}{20} ki te \frac{5}{2}, ka \frac{9}{8}.
\frac{11}{8}\times \frac{4}{33}+\frac{\left(1-\frac{1}{2}\right)^{2}}{3}+\left(\frac{2}{3}\right)^{2}
Tangohia te \frac{9}{8} i te \frac{5}{2}, ka \frac{11}{8}.
\frac{1}{6}+\frac{\left(1-\frac{1}{2}\right)^{2}}{3}+\left(\frac{2}{3}\right)^{2}
Whakareatia te \frac{11}{8} ki te \frac{4}{33}, ka \frac{1}{6}.
\frac{1}{6}+\frac{\left(\frac{1}{2}\right)^{2}}{3}+\left(\frac{2}{3}\right)^{2}
Tangohia te \frac{1}{2} i te 1, ka \frac{1}{2}.
\frac{1}{6}+\frac{\frac{1}{4}}{3}+\left(\frac{2}{3}\right)^{2}
Tātaihia te \frac{1}{2} mā te pū o 2, kia riro ko \frac{1}{4}.
\frac{1}{6}+\frac{1}{4\times 3}+\left(\frac{2}{3}\right)^{2}
Tuhia te \frac{\frac{1}{4}}{3} hei hautanga kotahi.
\frac{1}{6}+\frac{1}{12}+\left(\frac{2}{3}\right)^{2}
Whakareatia te 4 ki te 3, ka 12.
\frac{1}{4}+\left(\frac{2}{3}\right)^{2}
Tāpirihia te \frac{1}{6} ki te \frac{1}{12}, ka \frac{1}{4}.
\frac{1}{4}+\frac{4}{9}
Tātaihia te \frac{2}{3} mā te pū o 2, kia riro ko \frac{4}{9}.
\frac{25}{36}
Tāpirihia te \frac{1}{4} ki te \frac{4}{9}, ka \frac{25}{36}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}