Aromātai
\frac{32}{195}\approx 0.164102564
Tauwehe
\frac{2 ^ {5}}{3 \cdot 5 \cdot 13} = 0.1641025641025641
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{2}{3}-\frac{0.25}{\frac{5}{8}\times 3}}{\frac{3\times 4+1}{4}}
Tuhia te \frac{\frac{0.25}{\frac{5}{8}}}{3} hei hautanga kotahi.
\frac{\frac{2}{3}-\frac{0.25}{\frac{5\times 3}{8}}}{\frac{3\times 4+1}{4}}
Tuhia te \frac{5}{8}\times 3 hei hautanga kotahi.
\frac{\frac{2}{3}-\frac{0.25}{\frac{15}{8}}}{\frac{3\times 4+1}{4}}
Whakareatia te 5 ki te 3, ka 15.
\frac{\frac{2}{3}-0.25\times \frac{8}{15}}{\frac{3\times 4+1}{4}}
Whakawehe 0.25 ki te \frac{15}{8} mā te whakarea 0.25 ki te tau huripoki o \frac{15}{8}.
\frac{\frac{2}{3}-\frac{1}{4}\times \frac{8}{15}}{\frac{3\times 4+1}{4}}
Me tahuri ki tau ā-ira 0.25 ki te hautau \frac{25}{100}. Whakahekea te hautanga \frac{25}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
\frac{\frac{2}{3}-\frac{1\times 8}{4\times 15}}{\frac{3\times 4+1}{4}}
Me whakarea te \frac{1}{4} ki te \frac{8}{15} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\frac{2}{3}-\frac{8}{60}}{\frac{3\times 4+1}{4}}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 8}{4\times 15}.
\frac{\frac{2}{3}-\frac{2}{15}}{\frac{3\times 4+1}{4}}
Whakahekea te hautanga \frac{8}{60} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{\frac{10}{15}-\frac{2}{15}}{\frac{3\times 4+1}{4}}
Ko te maha noa iti rawa atu o 3 me 15 ko 15. Me tahuri \frac{2}{3} me \frac{2}{15} ki te hautau me te tautūnga 15.
\frac{\frac{10-2}{15}}{\frac{3\times 4+1}{4}}
Tā te mea he rite te tauraro o \frac{10}{15} me \frac{2}{15}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{8}{15}}{\frac{3\times 4+1}{4}}
Tangohia te 2 i te 10, ka 8.
\frac{\frac{8}{15}}{\frac{12+1}{4}}
Whakareatia te 3 ki te 4, ka 12.
\frac{\frac{8}{15}}{\frac{13}{4}}
Tāpirihia te 12 ki te 1, ka 13.
\frac{8}{15}\times \frac{4}{13}
Whakawehe \frac{8}{15} ki te \frac{13}{4} mā te whakarea \frac{8}{15} ki te tau huripoki o \frac{13}{4}.
\frac{8\times 4}{15\times 13}
Me whakarea te \frac{8}{15} ki te \frac{4}{13} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{32}{195}
Mahia ngā whakarea i roto i te hautanga \frac{8\times 4}{15\times 13}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}