Aromātai
\frac{7}{15}\approx 0.466666667
Tauwehe
\frac{7}{3 \cdot 5} = 0.4666666666666667
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{2}{3}\times \frac{4}{3}-\left(\frac{4}{9}-\frac{1}{3}\right)\right)\times \frac{3}{5}
Whakawehe \frac{2}{3} ki te \frac{3}{4} mā te whakarea \frac{2}{3} ki te tau huripoki o \frac{3}{4}.
\left(\frac{2\times 4}{3\times 3}-\left(\frac{4}{9}-\frac{1}{3}\right)\right)\times \frac{3}{5}
Me whakarea te \frac{2}{3} ki te \frac{4}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\left(\frac{8}{9}-\left(\frac{4}{9}-\frac{1}{3}\right)\right)\times \frac{3}{5}
Mahia ngā whakarea i roto i te hautanga \frac{2\times 4}{3\times 3}.
\left(\frac{8}{9}-\left(\frac{4}{9}-\frac{3}{9}\right)\right)\times \frac{3}{5}
Ko te maha noa iti rawa atu o 9 me 3 ko 9. Me tahuri \frac{4}{9} me \frac{1}{3} ki te hautau me te tautūnga 9.
\left(\frac{8}{9}-\frac{4-3}{9}\right)\times \frac{3}{5}
Tā te mea he rite te tauraro o \frac{4}{9} me \frac{3}{9}, me tango rāua mā te tango i ō raua taurunga.
\left(\frac{8}{9}-\frac{1}{9}\right)\times \frac{3}{5}
Tangohia te 3 i te 4, ka 1.
\frac{8-1}{9}\times \frac{3}{5}
Tā te mea he rite te tauraro o \frac{8}{9} me \frac{1}{9}, me tango rāua mā te tango i ō raua taurunga.
\frac{7}{9}\times \frac{3}{5}
Tangohia te 1 i te 8, ka 7.
\frac{7\times 3}{9\times 5}
Me whakarea te \frac{7}{9} ki te \frac{3}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{21}{45}
Mahia ngā whakarea i roto i te hautanga \frac{7\times 3}{9\times 5}.
\frac{7}{15}
Whakahekea te hautanga \frac{21}{45} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}