Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\frac{1}{6}+\frac{-3\times 2}{4\times 3}}{\frac{1}{3}-\left(-\frac{1\times 6+1}{6}\right)}
Me whakarea te -\frac{3}{4} ki te \frac{2}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\frac{1}{6}+\frac{-6}{12}}{\frac{1}{3}-\left(-\frac{1\times 6+1}{6}\right)}
Mahia ngā whakarea i roto i te hautanga \frac{-3\times 2}{4\times 3}.
\frac{\frac{1}{6}-\frac{1}{2}}{\frac{1}{3}-\left(-\frac{1\times 6+1}{6}\right)}
Whakahekea te hautanga \frac{-6}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
\frac{\frac{1}{6}-\frac{3}{6}}{\frac{1}{3}-\left(-\frac{1\times 6+1}{6}\right)}
Ko te maha noa iti rawa atu o 6 me 2 ko 6. Me tahuri \frac{1}{6} me \frac{1}{2} ki te hautau me te tautūnga 6.
\frac{\frac{1-3}{6}}{\frac{1}{3}-\left(-\frac{1\times 6+1}{6}\right)}
Tā te mea he rite te tauraro o \frac{1}{6} me \frac{3}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{-2}{6}}{\frac{1}{3}-\left(-\frac{1\times 6+1}{6}\right)}
Tangohia te 3 i te 1, ka -2.
\frac{-\frac{1}{3}}{\frac{1}{3}-\left(-\frac{1\times 6+1}{6}\right)}
Whakahekea te hautanga \frac{-2}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{-\frac{1}{3}}{\frac{1}{3}-\left(-\frac{6+1}{6}\right)}
Whakareatia te 1 ki te 6, ka 6.
\frac{-\frac{1}{3}}{\frac{1}{3}-\left(-\frac{7}{6}\right)}
Tāpirihia te 6 ki te 1, ka 7.
\frac{-\frac{1}{3}}{\frac{1}{3}+\frac{7}{6}}
Ko te tauaro o -\frac{7}{6} ko \frac{7}{6}.
\frac{-\frac{1}{3}}{\frac{2}{6}+\frac{7}{6}}
Ko te maha noa iti rawa atu o 3 me 6 ko 6. Me tahuri \frac{1}{3} me \frac{7}{6} ki te hautau me te tautūnga 6.
\frac{-\frac{1}{3}}{\frac{2+7}{6}}
Tā te mea he rite te tauraro o \frac{2}{6} me \frac{7}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-\frac{1}{3}}{\frac{9}{6}}
Tāpirihia te 2 ki te 7, ka 9.
\frac{-\frac{1}{3}}{\frac{3}{2}}
Whakahekea te hautanga \frac{9}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
-\frac{1}{3}\times \frac{2}{3}
Whakawehe -\frac{1}{3} ki te \frac{3}{2} mā te whakarea -\frac{1}{3} ki te tau huripoki o \frac{3}{2}.
\frac{-2}{3\times 3}
Me whakarea te -\frac{1}{3} ki te \frac{2}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-2}{9}
Mahia ngā whakarea i roto i te hautanga \frac{-2}{3\times 3}.
-\frac{2}{9}
Ka taea te hautanga \frac{-2}{9} te tuhi anō ko -\frac{2}{9} mā te tango i te tohu tōraro.