Aromātai
-\frac{2}{9}\approx -0.222222222
Tauwehe
-\frac{2}{9} = -0.2222222222222222
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{1}{6}+\frac{-3\times 2}{4\times 3}}{\frac{1}{3}-\left(-\frac{1\times 6+1}{6}\right)}
Me whakarea te -\frac{3}{4} ki te \frac{2}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\frac{1}{6}+\frac{-6}{12}}{\frac{1}{3}-\left(-\frac{1\times 6+1}{6}\right)}
Mahia ngā whakarea i roto i te hautanga \frac{-3\times 2}{4\times 3}.
\frac{\frac{1}{6}-\frac{1}{2}}{\frac{1}{3}-\left(-\frac{1\times 6+1}{6}\right)}
Whakahekea te hautanga \frac{-6}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
\frac{\frac{1}{6}-\frac{3}{6}}{\frac{1}{3}-\left(-\frac{1\times 6+1}{6}\right)}
Ko te maha noa iti rawa atu o 6 me 2 ko 6. Me tahuri \frac{1}{6} me \frac{1}{2} ki te hautau me te tautūnga 6.
\frac{\frac{1-3}{6}}{\frac{1}{3}-\left(-\frac{1\times 6+1}{6}\right)}
Tā te mea he rite te tauraro o \frac{1}{6} me \frac{3}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{-2}{6}}{\frac{1}{3}-\left(-\frac{1\times 6+1}{6}\right)}
Tangohia te 3 i te 1, ka -2.
\frac{-\frac{1}{3}}{\frac{1}{3}-\left(-\frac{1\times 6+1}{6}\right)}
Whakahekea te hautanga \frac{-2}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{-\frac{1}{3}}{\frac{1}{3}-\left(-\frac{6+1}{6}\right)}
Whakareatia te 1 ki te 6, ka 6.
\frac{-\frac{1}{3}}{\frac{1}{3}-\left(-\frac{7}{6}\right)}
Tāpirihia te 6 ki te 1, ka 7.
\frac{-\frac{1}{3}}{\frac{1}{3}+\frac{7}{6}}
Ko te tauaro o -\frac{7}{6} ko \frac{7}{6}.
\frac{-\frac{1}{3}}{\frac{2}{6}+\frac{7}{6}}
Ko te maha noa iti rawa atu o 3 me 6 ko 6. Me tahuri \frac{1}{3} me \frac{7}{6} ki te hautau me te tautūnga 6.
\frac{-\frac{1}{3}}{\frac{2+7}{6}}
Tā te mea he rite te tauraro o \frac{2}{6} me \frac{7}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-\frac{1}{3}}{\frac{9}{6}}
Tāpirihia te 2 ki te 7, ka 9.
\frac{-\frac{1}{3}}{\frac{3}{2}}
Whakahekea te hautanga \frac{9}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
-\frac{1}{3}\times \frac{2}{3}
Whakawehe -\frac{1}{3} ki te \frac{3}{2} mā te whakarea -\frac{1}{3} ki te tau huripoki o \frac{3}{2}.
\frac{-2}{3\times 3}
Me whakarea te -\frac{1}{3} ki te \frac{2}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-2}{9}
Mahia ngā whakarea i roto i te hautanga \frac{-2}{3\times 3}.
-\frac{2}{9}
Ka taea te hautanga \frac{-2}{9} te tuhi anō ko -\frac{2}{9} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}