Aromātai
-141
Tauwehe
-141
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\{ [ 4 - ( 8 \times 5 ) + 3 + ( 2 \times 6 ) ] - 120 \}
Tohaina
Kua tāruatia ki te papatopenga
4-40+3+2\times 6-120
Whakareatia te 8 ki te 5, ka 40.
-36+3+2\times 6-120
Tangohia te 40 i te 4, ka -36.
-33+2\times 6-120
Tāpirihia te -36 ki te 3, ka -33.
-33+12-120
Whakareatia te 2 ki te 6, ka 12.
-21-120
Tāpirihia te -33 ki te 12, ka -21.
-141
Tangohia te 120 i te -21, ka -141.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}