Aromātai
\frac{59}{4}=14.75
Tauwehe
\frac{59}{2 ^ {2}} = 14\frac{3}{4} = 14.75
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{\frac{\frac{12+3}{4}}{\frac{3}{4}-1}+\left(1-0\times 6\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Whakareatia te 3 ki te 4, ka 12.
\frac{\frac{\frac{\frac{15}{4}}{\frac{3}{4}-1}+\left(1-0\times 6\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Tāpirihia te 12 ki te 3, ka 15.
\frac{\frac{\frac{\frac{15}{4}}{\frac{3}{4}-\frac{4}{4}}+\left(1-0\times 6\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Me tahuri te 1 ki te hautau \frac{4}{4}.
\frac{\frac{\frac{\frac{15}{4}}{\frac{3-4}{4}}+\left(1-0\times 6\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Tā te mea he rite te tauraro o \frac{3}{4} me \frac{4}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{\frac{\frac{15}{4}}{-\frac{1}{4}}+\left(1-0\times 6\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Tangohia te 4 i te 3, ka -1.
\frac{\frac{\frac{15}{4}\left(-4\right)+\left(1-0\times 6\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Whakawehe \frac{15}{4} ki te -\frac{1}{4} mā te whakarea \frac{15}{4} ki te tau huripoki o -\frac{1}{4}.
\frac{\frac{\frac{15\left(-4\right)}{4}+\left(1-0\times 6\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Tuhia te \frac{15}{4}\left(-4\right) hei hautanga kotahi.
\frac{\frac{\frac{-60}{4}+\left(1-0\times 6\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Whakareatia te 15 ki te -4, ka -60.
\frac{\frac{-15+\left(1-0\times 6\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Whakawehea te -60 ki te 4, kia riro ko -15.
\frac{\frac{-15+\left(1-0\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Whakareatia te 0 ki te 6, ka 0.
\frac{\frac{-15+1\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Tangohia te 0 i te 1, ka 1.
\frac{\frac{-15+1\times \frac{25}{4}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Tātaihia te -\frac{5}{2} mā te pū o 2, kia riro ko \frac{25}{4}.
\frac{\frac{-15+\frac{25}{4}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Whakareatia te 1 ki te \frac{25}{4}, ka \frac{25}{4}.
\frac{\frac{-\frac{60}{4}+\frac{25}{4}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Me tahuri te -15 ki te hautau -\frac{60}{4}.
\frac{\frac{\frac{-60+25}{4}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Tā te mea he rite te tauraro o -\frac{60}{4} me \frac{25}{4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{-\frac{35}{4}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Tāpirihia te -60 ki te 25, ka -35.
\frac{-\frac{35}{4}\left(-\frac{3}{5}\right)-20}{\left(-1\right)^{39}}
Whakawehe -\frac{35}{4} ki te -\frac{5}{3} mā te whakarea -\frac{35}{4} ki te tau huripoki o -\frac{5}{3}.
\frac{\frac{-35\left(-3\right)}{4\times 5}-20}{\left(-1\right)^{39}}
Me whakarea te -\frac{35}{4} ki te -\frac{3}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\frac{105}{20}-20}{\left(-1\right)^{39}}
Mahia ngā whakarea i roto i te hautanga \frac{-35\left(-3\right)}{4\times 5}.
\frac{\frac{21}{4}-20}{\left(-1\right)^{39}}
Whakahekea te hautanga \frac{105}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{\frac{21}{4}-\frac{80}{4}}{\left(-1\right)^{39}}
Me tahuri te 20 ki te hautau \frac{80}{4}.
\frac{\frac{21-80}{4}}{\left(-1\right)^{39}}
Tā te mea he rite te tauraro o \frac{21}{4} me \frac{80}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{-\frac{59}{4}}{\left(-1\right)^{39}}
Tangohia te 80 i te 21, ka -59.
\frac{-\frac{59}{4}}{-1}
Tātaihia te -1 mā te pū o 39, kia riro ko -1.
\frac{-59}{4\left(-1\right)}
Tuhia te \frac{-\frac{59}{4}}{-1} hei hautanga kotahi.
\frac{-59}{-4}
Whakareatia te 4 ki te -1, ka -4.
\frac{59}{4}
Ka taea te hautanga \frac{-59}{-4} te whakamāmā ki te \frac{59}{4} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}