Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(\frac{\left(\left(1-\frac{3}{8}+\frac{4}{5}-\frac{11}{20}\right)\left(\frac{3}{14}+\frac{5}{7}-1+\frac{3}{2}\right)\right)^{2}}{\left(-1+\frac{2}{4}\right)^{2}}\right)^{2}}{\left(\frac{5}{6}+\frac{1}{2}-\frac{1}{12}\right)^{2}}
Whakawehea te 2 ki te 2, kia riro ko 1.
\frac{\left(\frac{\left(\left(\frac{5}{8}+\frac{4}{5}-\frac{11}{20}\right)\left(\frac{3}{14}+\frac{5}{7}-1+\frac{3}{2}\right)\right)^{2}}{\left(-1+\frac{2}{4}\right)^{2}}\right)^{2}}{\left(\frac{5}{6}+\frac{1}{2}-\frac{1}{12}\right)^{2}}
Tangohia te \frac{3}{8} i te 1, ka \frac{5}{8}.
\frac{\left(\frac{\left(\left(\frac{57}{40}-\frac{11}{20}\right)\left(\frac{3}{14}+\frac{5}{7}-1+\frac{3}{2}\right)\right)^{2}}{\left(-1+\frac{2}{4}\right)^{2}}\right)^{2}}{\left(\frac{5}{6}+\frac{1}{2}-\frac{1}{12}\right)^{2}}
Tāpirihia te \frac{5}{8} ki te \frac{4}{5}, ka \frac{57}{40}.
\frac{\left(\frac{\left(\frac{7}{8}\left(\frac{3}{14}+\frac{5}{7}-1+\frac{3}{2}\right)\right)^{2}}{\left(-1+\frac{2}{4}\right)^{2}}\right)^{2}}{\left(\frac{5}{6}+\frac{1}{2}-\frac{1}{12}\right)^{2}}
Tangohia te \frac{11}{20} i te \frac{57}{40}, ka \frac{7}{8}.
\frac{\left(\frac{\left(\frac{7}{8}\left(\frac{13}{14}-1+\frac{3}{2}\right)\right)^{2}}{\left(-1+\frac{2}{4}\right)^{2}}\right)^{2}}{\left(\frac{5}{6}+\frac{1}{2}-\frac{1}{12}\right)^{2}}
Tāpirihia te \frac{3}{14} ki te \frac{5}{7}, ka \frac{13}{14}.
\frac{\left(\frac{\left(\frac{7}{8}\left(-\frac{1}{14}+\frac{3}{2}\right)\right)^{2}}{\left(-1+\frac{2}{4}\right)^{2}}\right)^{2}}{\left(\frac{5}{6}+\frac{1}{2}-\frac{1}{12}\right)^{2}}
Tangohia te 1 i te \frac{13}{14}, ka -\frac{1}{14}.
\frac{\left(\frac{\left(\frac{7}{8}\times \frac{10}{7}\right)^{2}}{\left(-1+\frac{2}{4}\right)^{2}}\right)^{2}}{\left(\frac{5}{6}+\frac{1}{2}-\frac{1}{12}\right)^{2}}
Tāpirihia te -\frac{1}{14} ki te \frac{3}{2}, ka \frac{10}{7}.
\frac{\left(\frac{\left(\frac{5}{4}\right)^{2}}{\left(-1+\frac{2}{4}\right)^{2}}\right)^{2}}{\left(\frac{5}{6}+\frac{1}{2}-\frac{1}{12}\right)^{2}}
Whakareatia te \frac{7}{8} ki te \frac{10}{7}, ka \frac{5}{4}.
\frac{\left(\frac{\frac{25}{16}}{\left(-1+\frac{2}{4}\right)^{2}}\right)^{2}}{\left(\frac{5}{6}+\frac{1}{2}-\frac{1}{12}\right)^{2}}
Tātaihia te \frac{5}{4} mā te pū o 2, kia riro ko \frac{25}{16}.
\frac{\left(\frac{\frac{25}{16}}{\left(-1+\frac{1}{2}\right)^{2}}\right)^{2}}{\left(\frac{5}{6}+\frac{1}{2}-\frac{1}{12}\right)^{2}}
Whakahekea te hautanga \frac{2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{\left(\frac{\frac{25}{16}}{\left(-\frac{1}{2}\right)^{2}}\right)^{2}}{\left(\frac{5}{6}+\frac{1}{2}-\frac{1}{12}\right)^{2}}
Tāpirihia te -1 ki te \frac{1}{2}, ka -\frac{1}{2}.
\frac{\left(\frac{\frac{25}{16}}{\frac{1}{4}}\right)^{2}}{\left(\frac{5}{6}+\frac{1}{2}-\frac{1}{12}\right)^{2}}
Tātaihia te -\frac{1}{2} mā te pū o 2, kia riro ko \frac{1}{4}.
\frac{\left(\frac{25}{16}\times 4\right)^{2}}{\left(\frac{5}{6}+\frac{1}{2}-\frac{1}{12}\right)^{2}}
Whakawehe \frac{25}{16} ki te \frac{1}{4} mā te whakarea \frac{25}{16} ki te tau huripoki o \frac{1}{4}.
\frac{\left(\frac{25}{4}\right)^{2}}{\left(\frac{5}{6}+\frac{1}{2}-\frac{1}{12}\right)^{2}}
Whakareatia te \frac{25}{16} ki te 4, ka \frac{25}{4}.
\frac{\frac{625}{16}}{\left(\frac{5}{6}+\frac{1}{2}-\frac{1}{12}\right)^{2}}
Tātaihia te \frac{25}{4} mā te pū o 2, kia riro ko \frac{625}{16}.
\frac{\frac{625}{16}}{\left(\frac{4}{3}-\frac{1}{12}\right)^{2}}
Tāpirihia te \frac{5}{6} ki te \frac{1}{2}, ka \frac{4}{3}.
\frac{\frac{625}{16}}{\left(\frac{5}{4}\right)^{2}}
Tangohia te \frac{1}{12} i te \frac{4}{3}, ka \frac{5}{4}.
\frac{\frac{625}{16}}{\frac{25}{16}}
Tātaihia te \frac{5}{4} mā te pū o 2, kia riro ko \frac{25}{16}.
\frac{625}{16}\times \frac{16}{25}
Whakawehe \frac{625}{16} ki te \frac{25}{16} mā te whakarea \frac{625}{16} ki te tau huripoki o \frac{25}{16}.
25
Whakareatia te \frac{625}{16} ki te \frac{16}{25}, ka 25.