Aromātai
-\frac{62}{35}\approx -1.771428571
Tauwehe
-\frac{62}{35} = -1\frac{27}{35} = -1.7714285714285714
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{3}{21}-\frac{49}{21}\right)\times \frac{1}{5}-\frac{4}{3}
Ko te maha noa iti rawa atu o 7 me 3 ko 21. Me tahuri \frac{1}{7} me \frac{7}{3} ki te hautau me te tautūnga 21.
\frac{3-49}{21}\times \frac{1}{5}-\frac{4}{3}
Tā te mea he rite te tauraro o \frac{3}{21} me \frac{49}{21}, me tango rāua mā te tango i ō raua taurunga.
-\frac{46}{21}\times \frac{1}{5}-\frac{4}{3}
Tangohia te 49 i te 3, ka -46.
\frac{-46}{21\times 5}-\frac{4}{3}
Me whakarea te -\frac{46}{21} ki te \frac{1}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-46}{105}-\frac{4}{3}
Mahia ngā whakarea i roto i te hautanga \frac{-46}{21\times 5}.
-\frac{46}{105}-\frac{4}{3}
Ka taea te hautanga \frac{-46}{105} te tuhi anō ko -\frac{46}{105} mā te tango i te tohu tōraro.
-\frac{46}{105}-\frac{140}{105}
Ko te maha noa iti rawa atu o 105 me 3 ko 105. Me tahuri -\frac{46}{105} me \frac{4}{3} ki te hautau me te tautūnga 105.
\frac{-46-140}{105}
Tā te mea he rite te tauraro o -\frac{46}{105} me \frac{140}{105}, me tango rāua mā te tango i ō raua taurunga.
\frac{-186}{105}
Tangohia te 140 i te -46, ka -186.
-\frac{62}{35}
Whakahekea te hautanga \frac{-186}{105} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}