Aromātai
K^{2}\left(K^{2}+10K+49\right)
Whakaroha
K^{4}+10K^{3}+49K^{2}
Tohaina
Kua tāruatia ki te papatopenga
\left(K\left(7-K\right)\right)^{2}-4\times 2K^{3}\left(-3\right)
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
\left(7K-K^{2}\right)^{2}-4\times 2K^{3}\left(-3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te K ki te 7-K.
49K^{2}-14KK^{2}+\left(K^{2}\right)^{2}-4\times 2K^{3}\left(-3\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(7K-K^{2}\right)^{2}.
49K^{2}-14K^{3}+\left(K^{2}\right)^{2}-4\times 2K^{3}\left(-3\right)
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
49K^{2}-14K^{3}+K^{4}-4\times 2K^{3}\left(-3\right)
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
49K^{2}-14K^{3}+K^{4}-8K^{3}\left(-3\right)
Whakareatia te 4 ki te 2, ka 8.
49K^{2}-14K^{3}+K^{4}-\left(-24K^{3}\right)
Whakareatia te 8 ki te -3, ka -24.
49K^{2}-14K^{3}+K^{4}+24K^{3}
Ko te tauaro o -24K^{3} ko 24K^{3}.
49K^{2}+10K^{3}+K^{4}
Pahekotia te -14K^{3} me 24K^{3}, ka 10K^{3}.
\left(K\left(7-K\right)\right)^{2}-4\times 2K^{3}\left(-3\right)
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
\left(7K-K^{2}\right)^{2}-4\times 2K^{3}\left(-3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te K ki te 7-K.
49K^{2}-14KK^{2}+\left(K^{2}\right)^{2}-4\times 2K^{3}\left(-3\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(7K-K^{2}\right)^{2}.
49K^{2}-14K^{3}+\left(K^{2}\right)^{2}-4\times 2K^{3}\left(-3\right)
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
49K^{2}-14K^{3}+K^{4}-4\times 2K^{3}\left(-3\right)
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
49K^{2}-14K^{3}+K^{4}-8K^{3}\left(-3\right)
Whakareatia te 4 ki te 2, ka 8.
49K^{2}-14K^{3}+K^{4}-\left(-24K^{3}\right)
Whakareatia te 8 ki te -3, ka -24.
49K^{2}-14K^{3}+K^{4}+24K^{3}
Ko te tauaro o -24K^{3} ko 24K^{3}.
49K^{2}+10K^{3}+K^{4}
Pahekotia te -14K^{3} me 24K^{3}, ka 10K^{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}